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EXPERIMENTAL RESEARCH

HUMAN CHR18: “STAKHANOVITE” GENES, MISSING AND UPE1 PROTEINS IN LIVER TISSUE
AND HEPG2 CELLS
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Missing (MP) and functionally uncharacterized proteins (uPE1) comprise less than 5% of the total number of proteins encoded by human
Chr18 genes. Within half a year, since the January 2020 version of NextProt, the number of entries in the MP+uPE1 datasets changed, mainly
due to the achievements of antibody-based proteomics. Assuming that the proteome is closely related to the transcriptome scaffold, quantitative
PCR, Illumina HiSeq, and Oxford Nanopore Technology were applied to characterize the liver samples of three male donors in comparison with
the HepG2 cell line. The data mining of the Expression Atlas (EMBL-EBI) and the profiling of biopsy samples by using orthogonal methods of
transcriptome analysis have shown that in HepG2 cells and the liver, the genes encoding functionally uncharacterized proteins (uPE1) are expressed
as low as for the missing proteins (less than 1 copy per cell), except the selected cases of HSBP1L1, TMEM241, C18orf21, and KLHL14. The initial
expectation that uPE1 genes might be expressed at higher levels than MP genes, was compromised by severe discrepancies in our semi-quantitative
gene expression data and in public databanks. Such discrepancy forced us to revisit the transcriptome of Chrl8, the target of the Russian C-HPP
Consortium. Tanglegram of highly expressed genes and further correlation analysis have shown the severe dependencies on the mRNA extraction
method and the analytical platform. Targeted gene expression analysis by quantitative PCR (qPCR) and high-throughput transcriptome profiling
(Illumina HiSeq and ONT MinlON) for the same set of samples from normal liver tissue and HepG2 cells revealed the detectable expression of
250+ (92%) protein-coding genes of Chr18 (at least one method). The expression of slightly more than 50% protein-coding genes was detected
simultaneously by all three methods. Correlation analysis of the gene expression profiles showed that the grouping of the datasets depended almost
equally on both the type of biological material and the experimental method, particularly cDNA/mRNA isolation and library preparation.
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Abbreviations: MP — Missing Proteins, uPE1 - functionally uncharacterized proteins, PE1 — Protein Existence Level 1 (validated
proteins), ONT — Oxford Nanopore Technologies, qPCR — Quantitative Polymerase Chain Reaction, cDNA — complimentary DNA,
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INTRODUCTION

The Chromosome-Centric Human Proteome Project
(C-HPP) [1] is currently in a mature state with a rough benchmark
of 85% of the human proteome covered throughout different
tissue/cell types [2]. The remaining portions of the uncovered
proteome are challenging because of two issues. First, there are
missing proteins never detected by mass spectrometry (MS)
or antibodies (Ab)-based experiments at the trustable level of
confidence [3]. Second, some proteins were sometimes detected
in a certain type of biospecimen, but without any clear function.
Although the segregation of the unexplained proteins into two

groups is obviously convenient, missing and uPE1 proteins from
tissues or cells appear similar by the equally low level of mRNA
expression. Moreover, according to NextProt releases, missing
proteins sometimes pass into the uPEl category, and such
transfer confers the ultimate task of the current phase of C-HPP.
We hypothesized, that missing and uPE1 proteins might not be so
different from the viewpoint of C-HPP mass-spectrometry pillar,
particularly if specific biospecimens are analyzed.

For the human chromosome 18 genes (Chr18, the Russian
C-HPP consortium [4]), the baseline metrics to the beginning
of 2020 included 265 protein-coding genes (PE1-PE4), among
which protein evidence of the level PEl was available for
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252, 13 proteins were missing and 10 had a uPE1 status. This
list of 23 proteins (10 PE2, 12 PE3 and just one PE4) became
our targets for the neXt-MP50 and CP50 challenges [2]. To
capture highlighted targets, in this study we relied upon the new
sequencing technology of the Oxford Nanopore enhanced by
further targeted data mining for the missing and uPE1 proteins.

The absence of some proteins could be reasonably
attributed to alterations in the primary structure [5], when
proteotypic peptides can accidentally fall into the splice
junctions, or carry nonsynonymous polymorphisms, affecting
the peptide retention time and mass-to-charge ratio in the LC—
MS/MS analysis. Thus, the increased accuracy of transcriptome
data became ultimately essential, despite many studies already
published on the chromosome-centric transcriptome to proteome
mapping, including those from our group [6, 8], from the
Spanish Proteome society [9], reports on Chr9 [10] and Chrl7
[11], and also the report on the transcriptome-to-translatome-
to-proteome contribution from the Chinese consortium [12].
Inspired by C-HPP work tasks a corpus of bioinformatics tools
[13, 14] and databases [15, 16] was developed to manage the
transcriptomes. However, little attention was paid to the problem
of the reliability of the underlying transcriptome data. In most
cases, the transcriptome was analyzed by a single method—e.g.,
RNA-Seq—and at best validated by a second method—e.g.,
by quantitative PCR. For example, SOLiD technology was
applied for the whole-transcriptome analysis of HepG2 cell
lines and liver tissues [17] (these biomaterials were proposed
by the Russian C-HPP Roadmap [4]) and validated by only 45
selected mRNAs by droplet digital PCR (ddPCR). Some other
data included Illumina Gall _and SOLiD profiling of Chrl8 [7]
but should be considered as outdated due to the novelties in the
next-generation sequencing (NGS) platforms.

Validating the transcriptome versus the proteome by
quantitatively correlating gene product abundance [18, 19] was
an attractive idea. The Chrl8 consortium (Russia) investigated
such an approach in detail. In capturing the transcriptome
to proteome relationships researches usually rely on general
arguments referring to NGS platform dependence of experiments,
gene-to-gene difference in effectiveness of transcription, the
rate of protein synthesis and degradation and so on [20, 21],
binding all these claims to the whole genome, not to a single
chromosome. Contrastively to the whole genome assumptions, in
the report [22] the chromosome-centric transcriptome to proteome
correlations were analyzed. The mRNAs levels were determined
independently by quantitative PCR (qPCR) of Chrl18 genes, and
then supported by the next-generation sequencing on Illumina and
SOLID platforms and further by the shotgun MS data. Actually,
studies in the field of Chr18 transcriptome profiling and targeted
proteome mapping in liver tissue and HepG2 cells [6] revealed
a poor correlation between transcriptome and proteome data.
Radko et al. [8] investigated to which extent the targeted PCR-
based transcriptome mining could contribute to the problem of the
missing proteins, encoded by human Chr18 genes. A summary of
these chromosome-centric efforts revealed the unexpectedly low
quantitative correlation, with no satisfactory explanation [5].

To create at least some ground for the analysis of missing
and uPE1 species, we have reanalyzed the transcriptome of
Chr18 to gain more accurate data and assess the level of errors in
such data by comparing the results from different platforms used
for transcriptome quantitation. We recruited the gold-standard
method of quantitative PCR (RT-PCR and ddPCR) together with
well established HiSeq/Illumina. In addition to these methods,

the recently emerged sequencing method articulated itself as
the Oxford Nanopore Technology (ONT) was recruited here
for C-HPP by using an ONT MinION sequencer [23], the low-
cost portable sequencing machine. The technology produces
lengthy reads up to 10* nucleotides (nt) advantageously to the
[llumina platform, which could obtain reads of 50- to 300-
nt long. However, the disadvantage of ONT is that long reads
contain errors at the rate of approximately 3-5 lost or misread
sites per 100 sequenced nt. ONT sequencing was characterized
in genomics by reading up to 70 thousand nt, at the transcript
level the read length was naturally limited by the mRNA length
and quality. For the first time, this technology was applied to the
human transcriptome [23] to analyze seven human cell lines and
a set of tissue samples, including that of the human liver. For the
LC2/ad cell line, the ONT performance was compared to short-
read RNA-seq data with a reasonably good correlation (r =0.88)
between the methods. Authors [23] have thoroughly compared
the expression levels of selected genes and found a significant
correlation (r=0.82) between ONT and qPCR, suggesting the
ONT MinlION is suitable for the quantitative assessment of the
human transcriptome.

Herein, by analysis of 3 samples of healthy livers and
hepatocyte-related HepG2 cells, we pursued a double task. We
have compared the three methods of transcript identification and
quantification to understand, taking the Chrl8 transcriptome
as an example, the extent to which the quantitative profiles are
consistent within the same biological sample. This question must
be answered before explaining the poor transcriptome-proteome
correlation.

MATERIALS AND METHODS
Human liver samples and HepG?2 cells

Samples of human liver were collected at autopsy from 3
male donors (designated further as donors #1, #3, and #5) aged
65, 38, and 54 years. The donors were HIV and hepatitis free,
and the sections had no histological signs of liver diseases.
The postmortem resected samples were immediately placed
into RNAlater RNA Stabilization Solution (“Thermo Fisher
Scientific”, USA) and stored at -20°C until further use.

HepG?2 cells (ATCC HB-8065, “ATCC”, USA) were grown
to approximately 80% confluence and harvested. The cells were
washed 3 times with PBS, counted using an EVE automated cell
counter (“NanoEntek”, South Korea), pelleted by centrifugation,
and kept in liquid nitrogen until further use.

Transcriptome profiling using reverse transcription gPCR

Transcriptome profiling with qPCR, total RNA was performed
using liver tissue samples and HepG?2 cells using the RNeasy Mini
Kit (“Qiagen”, Germany) according to the manufacturer’s protocol.
The on-column DNase digestion step was performed using the
RNAse-Free DNase Set (“Qiagen”). The isolated total RNA was
quantified using a Qubit 4 fluorometer and the Qubit RNA HS Assay
Kit (“Thermo Fisher Scientific”), and the RNA quality was assessed
using a Bioanalyzer 2100 System (“Agilent Technologies™). The
RIN numbers for all preparations of total RNA were 7.5 or higher.
Synthesis of cDNA was carried out using the AffinityScript gPCR
cDNA Synthesis Kit and random primers (“Agilent Technologies”)
according to the manufacturer’s recommendations. The ¢cDNA
samples were stored at -20°C until further use.
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The amount of each transcript encoded on Chr18 was assessed
by measuring the number of copies of pertinent cDNA in the
cDNA preparation derived from total RNA. gPCR was conducted
in two formats—droplet digital PCR (ddPCR, 49 transcripts)
and PCR in real time (PCR-1t, 226 transcripts)—employing the
earlier designed set of primers and probes [22, 24], with minor
exceptions. While ddPCR was performed as described previously
[22, 24], the transcriptome profiling by PCR-rt was carried out
using the ACt method [25].

To calculate the copy number of a transcript per cell, the
copy number per PCR probe was normalized by dividing it by the
amount of total RNA in the PCR probe (200 ng). The number of
transcripts per nanogram of total RNA was brought to the copy
numbers per cell based on the amount of total RNA in hepatocytes
and HepG?2 cells, reported to equal 40 pg/cell [26].

Illumina HiSeq sequencing and bioinformatics analysis

Total RNA was isolated using the Extract RNA kit (“Eurogen”,
Russia). RNA quality was evaluated using the Bioanalyzer 2100
System (“Agilent Technologies™). The RIN numbers varied from
7.3 to 9.1. Clustering and sequencing were carried out using the
Illumina HiSeq 2500 system (2 lanes per 8 samples) according
to the manufacturer’s protocols (Denature and Dilute Libraries
Guide, Sequencing in Rapid Run Mode). For each replicate, we
derived from 32 to 59 million reads.

The derived fastq files were analyzed by FastQC and then
were processed by Trimmomatic. The read mapping and expression
quantification were carried out employing STAR 2.7 (splice-aware
mapping to genome), bowtie2 (mapping to transcripts), RSEM
1.3 (quantifications of the reads), and Salmon (quasi-mapping
and quantification) software packages. The genome GRCh38.p12
assembly (Ensembl release 97) was used as a reference. Finally,
we compared the results obtained with STAR-RSEM, bowtie2-
RSEM and Salmon, calculated the Spearman/Pearson correlation
coefficients and created clustering dendrograms. The distance
between samples/pipelines (i.e., dissimilarity rate) was evaluated
as l—corr.coeff. To create dendrograms, we used the complete
linkage hierarchical clustering method.

The sequencing data obtained in this study is available at
NCBI Sequence Read Archive (BioProject ID PRINA635536).

MinlON sequencing of HepG2 cells and liver transcriptomes

Total RNA was isolated and characterized as for qPCR
analysis. The extraction of mRNA from the total RN A preparations
was conducted using the Dynabeads™ mRNA Purification
Kit (“Thermo Fisher Scientific”’) following the manufacturer’s
recommendations. The mRNA preparations were immediately
frozen and stored at -80°C until nanopore sequencing.

Nanopore sequencing was carried out using the MinlON
sequencer (“ONT”, UK) with FLO-MIN107 flow cells and R9.4
chemistry and the Direct RNA sequencing kit (SQK-RNAO002,
“ONT”). The sequencing libraries were prepared strictly following
the manufacturer’s protocol with a single exception: 750 ng of
mRNA (poly+ RNA) was used as the input in both samples from
human liver and HepG2 cell instead of the recommended 500
ng. The SuperScript III Reverse Transcriptase (“Thermo Fisher
Scientific”) was used for reverse transcription and NEBNext,
Quick Ligation Module (“New England Laboratories”, UK) was
used for end repair and ligation. The Agencourt RNAClean XP
magnetic beads (“Beckman Coulter”, USA) were employed for

nucleic acid purification.

The mRNA from HepG2 was sequenced in a 72-h single
run. The output was 0.75-Gb sequenced transcripts (0.766
million reads) with a median length of 1.56 kb. The mRNA from
the tissue liver of donor #1 was sequenced for 26 h. The flow cell
was regenerated using the Flow Cell Wash Kit (“ONT”), strictly
following the manufacturer’s guidance. Next, the newly prepared
sequencing library from the liver mRNA of donor #1 was loaded
on the flow cell and a 48-h sequencing run was initiated. The
overall output was 1.44 million reads with a median length of
1.37 kb.

The fast5 files produced by MinlON were uploaded onto the
Amazon Web Services ElasticCloud2 and processed using the
GPU-powered (Nvidia Tesla V100) virtual instance p3.2xlarge
(8x2.7 GHz vCPUs, 1 GPU) by the ONT-provided basecalling
software guppy_basecaller [27] with parameters “-flowcell FLO-
MIN107 -kit SQK-RNAO002”. Further pipelines included the
quality control by the MinIONqc.R script, followed by mapping
the reads onto the gencode.v32.transcriptome using minimap2
v. 2.17 [28]. The overall statistics of alignment mapping
was produced using the “samtools stats” command, and the
quantitative data were further collected by executing the program
Salmon. 0.12/1.1.0 with the command line options “quant -p 8
—noErrorModel” [29].

RESULTS AND DISCUSSION
Overview of Chrl8-coded missing and uPE1 proteins

To characterize transcription of genes encoding uPE1 and
MP, we performed analysis using the Oxford Nanopore system.
In total, 1.5 million reads were obtained for liver cells, and more
than 80% of these reads were successfully mapped to the human
transcriptome version v32. Data for the same samples were
collected using the orthogonal platforms Illumina (hereafter also
called HiSeq) and quantitative PCR.

The transcripts of the uPEl proteins were expected to be
detected at more than the transcripts encoding the missing proteins.
However, the experimental data indicated the opposite: the level
of protein transcription in both groups was comparably low.
For example, for the uPE1 proteins TMEM200C and KLHL14,
15 TPM and 7 TPM were observed, respectively. The average
expression level (for the values: TPM>0, n=8) was 4.48+2.67
TPM and 4.69+1.17 TPM for transcripts encoding missing and
uPE1 proteins, respectively.

We compared the values of the expression level of the studied
group of genes (MP+uPE1) with the data obtained using alternative
methods (Supplementary material Table S1). We confirmed, using
both Illumina HiSeq and quantitative PCR, that the transcripts are
expressed at an extremely low level, close to the detection limit.
Thus, regarding the transcriptome of the studied biomaterials—
that is, the liver and HepG2 cells—the genes encoding missing
and uPE1 proteins were similar in the expression level and could
be analyzed together.

The use of the EMBL-EBI’s gene ExpressionAtlas [31]
database revealed that the genes encoding the missing proteins
are not expressed at a significant level in any of the analyzed
tissues. For example, the highest values for the ELO3B gene
reached a negligible level of 2 TPM in the choroid plexus, and
HMSD, the most expressed gene, reached 11 TPM in the spinal
cord and 14 TPM in transformed lymphocytes. However, genes
encoding uPE1 proteins in some tissues reached 3—5 times higher
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values than the maximum values for missing protein transcripts:
ANKRD?29 reached 71 TPM in the lymph nodes or up to 57 TPM
for a gene in the thyroid gland [31].

Confirmation of the above observations was found in
ProteinAtlas. In the liver tissue and HepG2 cells, the transcription
level of the uPEl coding genes and missing proteins was
comparatively low; however, in at least 1-2 tissues, the uPEl
proteins were expressed pronouncedly at the level of several
dozen TPMs. An interesting observation was the TMEM?241 gene,
which, according to the data of RNA-Seq from ProteinAtlas,
demonstrated little expression in the HepG2 cell line at the level
of 5 TPM, producing zero values in all the samples by both
sequencing methods used herein but was detected as low as 2.5
copies of cDNA per cell using ddPCR.

The pronounced differences between uPEl and missing
proteins were observed in the NextProt portal and the associated
PeptideAtlas resource: the uPEls were usually highly populated
using unique natural peptides, with little or no missing proteins.
Notably, one missing protein (CTAGE1) from the number of
missing proteins does not have unique proteotypic peptides
during tryptic hydrolysis. Two other proteins demonstrated one
proteotypic peptide each: the ANKRD30B protein peptide was
found in prostate cancer samples [33], and the proteotypic peptide
for HSBP1L1 was found in HepG2 cell samples [30].

Comparison of the NextProt releases from January and
July 2020 revealed the transfers of proteins encoded by human
Chr18. The SMIM21 protein has moved from the missing protein
category to the uPEl category. SMIM21 is characterized as
“expression level 3” according to ProteinAtlas data, at a high level
of normalized expression of mMRNA NX=5.0 in the brain cancer
line. Another protein, encoded by the C18orf65 gene, changed
its category from PE2 to PES, leaving the ranks of the missing
proteins encoded by chromosome 18 genes.

For the HSBPI1L1 protein (74 a.a.r.), PeptideAtlas suggests
one proteotypic peptide 24 a.a.r. long. It was detected in HepG2
and LNCaT cell lines by Professor Mann’s group [30] using the
deep proteome coverage (8—12 thousand protein groups in the
identification list) with the original SPIDER technology of low-
loss digest mixture separation. Information has been published
about the involvement of this gene in the development head and
neck cancer [34], pancreas adenocarcinomas [35]. HSBPILI
is involved in chemical hepatocyte injury [36], prioritizing this
target to investigate the genetic aspects of liver diseases. In
the July 2020 version of NextProt, this protein was transferred
from the PE2 (e.g. missing proteins) to PE1 category, with the
functional annotation at the “silver” level. To our knowledge, this
transfer has not yet been confirmed by mass spectrometry data in
accordance with the criteria of the guidelines of version 3.0 [37],
at the same time MS-based support was delivered by top-down
proteomics [38] in HeLa cells.

So, at the time of this writing, the updated version of
NextProt included 9 missing genes and 11 genes characterized as
uPEIl from Chrl8.

The KLHL14 (uPEl) gene, represents a special case.
According to results obtained by different methods, its transcripts
were not detected in all biosamples, except the HepG2 sample,
where its expression level measured by quantitative PCR was
reported as 116 copies per cell. The expression level of the
housekeeping gene ATPSF1A was comparable: 324 copies of
c¢DNA per one HepG2 cell on an average.

To rely on transcriptome data for the analysis of MP and
uPE1 proteins encoded by chromosome 18 genes, exhibiting low

transcription levels, it is necessary to confirm the reliability of the
basic data. In view of this assumption we considered the datasets
in two ways: comparison of the list of highly expressed genes —
“Stakhanovite genes” [39] and deciphering a degree of correlation
between analytical methods. “Stakhanovite genes” are named
after the Soviet coal miner Alexey Stakhanov renowned for his
outstandingly hard everyday work.

We present a parallel between the expression of genes
which are everyday hard-workers, in contrast to the genes which
are smart-workers. The smart-working genes are not as highly
expressed but are regulating the whole process [32].

“Stakhanovite genes” of Chrl8

MP and uPE1 proteins encoded by the human Chrl8 are
characterized by low expression of corresponding genes in the
liver and HepG2 samples. To estimate the contribution of error
in the sample preparation and measuring methods, we started
not from the low expressed transcripts, but, oppositely, from
the extremely high abundant ones produced by “Stakhanovite
genes” (Fig. 1).

Supporting Information Table S2 shows five of the leading
“Stakhanovite genes” for each sample studied, exhibiting the
highest levels of expression as revealed by ONT MinION,
Illumina HiSeq, and qPCR analysis. These 5 topmost genes are
responsible for a substantial part of the total mRNA abundance.
For example, in the case of ONT MinlON sequencing, more
than 95% of the total mRNA abundance was attributed to the
corresponding “Stakhanovite genes” in both HepG2 cell and liver
samples. In this case, the RPL17 gene encoding 60S ribosomal
protein L17 — a component of the ribosomal complex—Ieads
the list of “Stakhanovite genes” for HepG2 cells. The gene
encoding transthyretin, TTR, has demonstrated the highest
expression in the liver, that secretes blood plasma components.
In addition to RPL17, other housekeeping genes were revealed
by ONT sequencing: MYL12A and MYLI12B encoding chains
of the motor protein myosin, ATP5FIA encoding the ATP-
synthase subunit alpha responsible for the energy generation
in mitochondria, and CYB5A encoding cytochrome b5, the
membrane-bound electron carrier. Among these genes, 4 top
genes were common for HepG2 cells and liver tissue, showing
a considerable level of qualitative concordance between the
biological samples of different origin.

Illumina HiSeq sequencing also revealed some level of
qualitative concordance among the “Stakhanovite genes” for
HepG2 cells and liver tissue samples: TTR and RPL17 were
expressed in all liver samples and HepG2 cells, NDUFV2 as well
as MYL12A were present in HepG2 and at least in two of three
liver samples (Fig. 1 and Supplementary material Table S2). The
similar level of qualitative concordance among “Stakhanovite
genes” was found between the liver samples studied. For gPCR
analysis, a relatively high level of matching was observed for
the subsets of “Stakhanovite genes” among liver tissue samples:
a coincidence of 4 of 5 or even 5 of 5 among the lists of highly
expressed genes. Surprisingly, the level of concordance between
the subsets of “Stakhanovites” revealed by two sequencing
platforms, ONT MinlON and Illumina HiSeq, was rather
moderate: only 4 items were shared between HepG?2 cells and the
liver sample, TTR, RPL17, MYL12A and CYBSA were among
them. A similar situation was observed for the liver sample
when the ONT MinION or Illumina HiSeq data were compared
with the qPCR data: only 3 of 5 top genes coincided. When the
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Figure 1. Tanglegram of the most heavily expressed “Stakhanovite” genes with (a) different methods and one sample (human liver) and (b) by
the same method, applied for different biospecimens (liver versus HepG2 cell line). Dendrograms were obtained using differences between the
estimations of the expression levels as measured by qPCR, Illumina HiSeq and ONT methods and scaled for convenient representation.

* indicates the most highly expressed genes.

Dendrograms were built using Ward’s clustering and the Euclid distance between log2-transformed data. The Dendextend package [40] was used to

draw tanglegrams and compute entanglement.

gqPCR data were compared with the HiSeq dataset for the liver
tissue samples of donors #3 and #5, only 2 matching hits were
identified (out of 5 selected “Stakhanovite genes). Moreover,
for HepG2 cells, no concordance was found between the subset
of “Stakhanovite genes” revealed by qPCR and those revealed
by either the ONT MinlON or Illumina HiSeq sequencing
(Supplementary material Table S2).

The leaves of the dendrograms in Fig. 1 correspond to the
highly expressed genes of Chr18 (topmost 13 expressed genes,
appeared in at least one sample in the Supporting Information
Table S2, were taken for this analysis). Clustering was
performed based on the distance metrics, which corresponded
to the difference in the values of gene expression, therefore,
the closer were leaves at the tree, the more similar were the
estimations of expression (either FPKM, copies of cDNA per
cell or TPM).

Fig. 1A represents the results of the analysis using two
different methods for the same liver sample. The leaves were
severely mixed between clusters, which were visually observed
as crosses between edges connecting two dendrograms. Among
the 10 probed genes, only two pairs preserved their closeness
in both dendrograms: MAPRE2 neighboring AFG3L2 and
subcluster MYL 12 subunits A and B. No such neighboring was
observed when different samples were compared by a single
method, the ONT (Fig. 1B). The assessment of entanglement
as a measure of concordance between dendrograms produced
similarly low values of 0.31 and 0.28 for Fig. 1A and 1B,
respectively. Thus, working within a single chromosome of
265 protein-coding genes, even for the case of highly expressed
genes, the relationship between the quantitative estimations of
the expression level was highly discordant. Although this finding
may be expected for the samples of normal liver and HepG2
cells derived from hepatoblastoma, it was rather surprising to
find such disparity in the results acquired from the same sample
analyzed using different methods.

Correlations of chromosome-centric transcriptome datasets

Different methods of transcriptome analysis may give
different results [7, 17, 41]. At the genome scale, the frequency of
RNA-Seq transcripts provides clues for MS identification of the
corresponding protein [42]. However, the feature of chromosome-
centric quantitative transcriptomics (presumably of quantitative
proteomics as well) is that when the number of genes is reduced
compared with that in the genome, the admissible correlations
can be severely affected. This can be especially true for Chr18
with a rather small number of genes.

Regarding qPCR, 235 of 275 transcripts encoded on Chrl8
were identified in both HepG2 cells and the liver samples of
each of three donors, while 16 transcripts were detected neither
in HepG2 cells nor in the liver samples of any of the donors
(Supplementary material Table S1 and Fig. S1). Furthermore, 14
transcripts were not found in HepG2 cells but were observed in a
liver sample of at least one donor, and 10 transcripts were present
in HepG2 cells but not in a liver sample of at least one donor
(Supplementary material Table S1). For common transcripts
of HepG2 cells and the liver samples, a good correlation was
observed between the levels of the Chr18 log-transformed gene
expression values (Supplementary material Fig. S2.1, panels A
to C). The values of the Pearson correlation coefficient, r , are
within the narrow interval of 0.76-0.79, agreeing well with
the previously obtained r value of 0.78 for the ‘HepG2 cells
vs. pooled liver sample’ correlation [22]. At the same time,
the correlations between the transcript abundances in the liver
tissue between donors were found to be strikingly high: ro=
0.963-0.966 (Supplementary material Fig. S2.1, panels D to
F). Similar to qPCR data, a higher correlation was observed
between gene expression profiles derived with Illumina HiSeq
(log-transformed FPKM values) in liver tissue samples — r o=
0.827-0.925 (Supplementary material Fig. S2.2). Liver gene
expression, quantified by the Illumina HiSeq, was also well
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Figure 2. Cross-correlation matrix between gene expression datasets obtained for liver tissue and HepG2 cell line samples from different sources and
harvested in our previous work in 2016 (Hep13, Liv13) and current work (Hep20, Liv20). The indices d1, d3 and d5 for Liv20 indicate the particular
individuals (donors of postmortem liver samples). SRA datasets: Hep13 - SRX395473 (2013) and SRX390071 (2014), Liv13 - SRX267708 (2013).

correlated with that in HepG2 cells: r_ values were within the
interval of 0.691-0.812 and agreed with those obtained by qPCR
profiling (Supplementary material, Fig. S2.2 vs. Fig. S2.1).

Compared with the short-read sequencing such as Illumina,
the long-read ONT sequencing is a relatively new technology.
It should be considered as orthogonal to HiSeq, and different
bioinformatics analyses are eventually required to treat the
raw data. Although the LAST and BWA algorithms (originally
developed for the mapping of short reads [42, 43]) were also
employed for ONT data processing [23], the minimap?2 tool [44]
is nowadays widely used for long noisy read mapping.

Thus, we prepared three datasets from the orthogonal
methods and performed correlation analysis supplied with a
cluster dendrogram (Fig. 2, Supplementary material Table S3).

The upper triangle of the matrix in Fig. 2 contains the
Spearman correlation coefficient between the gene expression
values determined by qPCR (number of cDNA copies per cell),
[llumina HiSeq, and ONT. Additionally, we calculated Pearson
correlation coefficients (lower triangle of the matrix, Fig. 2,
Supplementary material Table S2) for the expression values,
which were square root transformed to reduce the dominant
effect of highly expressed genes. The dendrogram was created
based on the Spearman rank correlation coefficients (hierarchical
clustering using Ward’s D2 method).

In this study, we also included our previous results
[24], which were obtained using Illumina Gall and Applied
Biosystems SOLiD platforms for the HepG2 cell line (denoted
as Hep13 in Fig. 2, originating from a different source than the
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HepG?2 cells used in the current study) and from the pooled sample
of three human livers (denoted as Liv13).

As can be seen from the dendrogram (Fig. 2), the gene
expression profiles are clustered into four groups. The division
occurs at the level of the methodology: the first cluster was
attributed to quantitative PCR method, while other three
clusters accommodate the results of next-generation sequencing.
Furthermore, to a lesser extent, in the case of qPCR, a separation
occurred according to the type of biological material. In the
case of sequencing, a separation occurred according to both the
biomaterial type and cDNA/mRNA library preparation method.
These findings are presented more clearly in the Supplementary
material Table S3, which includes data on technical replicates and
various RNA-Seq data processing pipelines. At the same time,
clusters 2 and 3 combined the data from various platforms—
[umina Gall , AB SOLiD, and ONT MinlION. These libraries
were prepared by polyA mRNA isolation using magnetic
microbeads. Finally, cluster 4 included data on HepG2 and liver
samples prepared using polyA amplification.

One possible reason for this discrepancy between library
prep techniques may be a difference in RNA integrity. Low
initial RNA integrity as well as an improper sample preparation
procedure induces a shift in the density read coverage towards
the 3'-tail of transcripts when using polyA isolation/amplification
methods. Thus, we evaluated the differences in the distribution of
5'-to-3' read coverage density and fortunately found no significant
differences between cluster 4 and clusters 2/3 (i.e., between
polyA mRNA isolation using the microbead technique and polyA
amplification using MINT reverse transcriptase). The data in
Supplementary material Table S3 provides information on how
fragile are dependencies between samples, sample preparation
methods, bioanalytical platforms and bioinformatics pipeline of
transcriptome data processing. Such dependencies are usually
ignored at the whole-genome level. The chromosome-centric
current phase of discovery of the missing and uPEl proteins
appeals to re-think the paradigm at the transcriptome level.

With several exceptions, the Spearman (rank) and Pearson
correlation coefficients were concordant. The highest Spearman’s
rank correlation (r=0.70-0.97) was observed for the qPCR methods
(cluster 1). Within this cluster, there were two biomaterials—
specific subclusters. Within the clusters in greeny we observed
the data formed into the groups according to the year of analysis.
In general, the observed correlation pattern indicated that qPCR
works much better with low-expression genes than with RNA-Seq
mainly because of the stochastic noise and discrete nature of gene
expression values derived with RNA-Seq (i.e., read counts).

Notably, different clustering methods produced different
results: preferred grouping was observed either by biological
material or method. However, the close relationship between
the technical replicates and bioinformatics pipelines remained
invariant in the dendrograms. Nonetheless, we did not observe a
perfect match between the results obtained using various genome
annotations (RefSeq/Ensembl/Gencode) and data processing
protocols (STAR+RSEM, bowtie2+RSEM, Salmon), as well
as between technical replications: the Spearman correlation
coefficient between various data processing pipelines or technical
replicates ranging from 60% to 97%.

ONT-oriented selection of missing and uPE1 proteins

We observed a large variability among gene expression
values derived by RT—qPCR, Illumina and ONT sequencing

from the same biological sample. However, the present work was
not intended to clarify the underlying reasons for this variability,
but we aimed to highlight that a relatively high correlation
between various datasets derived by whole-transcriptome
analysis came primarily from the large dynamic range of
transcript abundances. Despite the sampling was confined by a
particular chromosome (Chrl8, 265 protein-coding genes), the
dynamic range of transcript abundances was still fairly large.
Nonetheless, the general correlations may decline (compare the
values of correlation coefficients in Fig. 4 with those of 0.92
or 0.9, reported for 18000+ genes by Tyakht et al. [17] or van
Deft et al. [45], respectively). For a more limited set of genes—
even if these genes are highly expressed such as in the case of
“Stakhanovite genes”—obvious disagreement occurred in the
levels of their expression measured by the orthogonal methods
(tanglegram in Fig. 1A, see also Supplementary material
Table S2). The dendrogram topologies (the branching pattern
relationship among individual genes) were quite different for
the RT-qPCR and Illumina methods (Fig. 1B). For a set of low-
abundance transcripts, one should expect a more profound “noise
effect”—the apparent well-known fact from whole-transcriptome
analysis. Additionally, the number of low-abundance transcripts
is heavily affected by TPM and FPKM threshold values set for
ONT and Illumina methods, respectively. For example, taking
the TPM/FPKM threshold values as > 0.1 resulted in ~60% of
Chr18 transcripts detected by all three methods (Supplementary
material Fig. S1), while setting the [1lumina’s FPKM threshold as
> (.1 would result in less than 50% of such transcripts.

Because we learned from the Expression Atlas (EMBL-
EBI) generally and from our own data particularly, that the
target missing and uPE1 proteins were present in low copies,
we focused on the presence of a corresponding gene product in
all samples, detected by all the methods employed. The lower
is the level of expression, the more nonrandom would be such
an observation. Therefore, in the low-copy range, correlation
analysis should be replaced by the unraveling of rarely observed
events. This enabled us to perform a simple selection of priorities
for the MP/uPE1 array as follows.

From the compendium of the ONT-detectable genes, we
selected those that exhibited nonzero values of TPM in both types
of biomaterials—i.e., the liver and HepG2. Two missing proteins
and four proteins with the uPEl status were obtained (Table
1). The following information was taken from the neXtProt
in Table 1: the a.a.r. number of the proteoform designated as
Isol (a canonical sequence, often the longest one), number of
variant records reported for a given protein as single-amino acid
polymorphisms, and the number of isoforms (assuming that
these could be splice forms or processed forms). Table 1 was
completed by indicating for the selected set of genes the FPKM
values (Illumina HiSeq), number of cDNA copies (qPCR), and
TPM values (ONT MinilON).

Table 1 enabled us to consider interesting cases of the
HSBPI1L1 missing protein and Cl8orf21, the uPE1 protein.
Compared with other proteins, these two proteins were covered
by ONT reads at modest but detectable levels. By contrast, for
example, the serpin-like protein HMSD was poorly represented
by the ONT-derived transcripts and undetected by the HiSeq
NGS platform. Because of negligible detection, the uPEl
proteins KLHL14 and TMEM200C were discarded. Notably,
KLHL14 showed an unexpected finding: the gPCR estimation
was 116 copies per cell, including it in a list of “Stakhanovite
genes” (Fig. 1).



Biomedical Chemistry: Research and Methods 2021, 4(1), e00144 DOI: 10.18097/bmcrm00144

8

Table 1. Selected genes of human chromosome 18. First, two genes were annotated as encoding the missing proteins (MPs), while four other genes
were attributed to the category of functionally uncharacterized but translated to the protein level with high evidence (uPE1). The neXtProt knowl-
edgebase was used to obtain information about the gene status, number of amino acid residues in the sequence of the isoform 1 (the longest one),
single amino acid polymorphisms (SAPs) according to the dbSNP and COSMIC datasets, and the known splice forms (Isol, Is02, Iso3).

Gene Name HMSD HSBPI1L1 ANKRD29 C18orf21 KLHL14 TMEM200C
Protein Serpin-like Heat shock Ankyrin repeat UPF0711 protein Kelch-like Trans-membrane
Name protein factor-binding | domain-containing Cl18orf21 protein 14 protein 200C
HMSD protein protein 29
NextProt | NX ASMTL9 | NX C9JCN9 NX Q8N6D5 NX Q32NCO0 NX Q9P2G3 NX A6NKL6
AC
Status MP MP uPEl uPEl uPEl uPEl
# of aa in 139 75 301 220 628 621
Isol
variants 111 56 231 166 385 648
(SAPs)
splice forms Isol Isol Isol, Iso3 Isol, Iso2 Isol, Iso2 Isol
qPCR (cDNA copies per cell)
Liver #1 0.00%* 0.88 0.02 0.37 0.02 0.33
Liver #3 0.01 0.47 0.10 0.33 0.03 0.42
Liver #5 0.02 0.59 0.07 0.22 0.01 0.52
HepG2 ND* 1.10 0.02 2.29 116.38 0.08
Ilumina HiSeq (FPKM)
Liver #1 ND* 3.50 0.00%* 4.5 0.00** 0.00%**
Liver #3 ND* 2.50 0.50 3.0 0.00** 1.00
Liver #5 ND* 6.00 0.00** 1.5 0.00** 2.00
HepG2 ND* 6.50 0.00%* 17.5 2.50 0.00%*
ONT MinION (TPM)
Liver #1 0.21 6.31 0.13 6.20 0.00** 0.04
HepG2 0.00%** 6.94 0.00%* 16.00 1.11 0.00%*

Note. *No reads observed **Rounded to the second decimal place

As of January 2020, the heat shock factor-binding protein
(HSBP1L1) was still missing, probably because of its tiny size
of only 75 a.ar. Additionally, HSBP1L1 was constitutively
expressed in the liverand HepG2 cells atthe level of approximately
67 transcripts per million (roughly corresponding to 1 cDNA
copy per cell). The values of FPKM were at the level of 3.5 for
liv.d1, and, remarkably, this protein was also detectable in other
samples, viz. liv.d3 and liv.d5.

Another interesting case is was UPF10711 protein, encoded
by C18orf21 gene. According to the neXtProt record Q32NCO,
this protein was characterized by two isoforms, Isol (220 a.a.r.)
and Iso2 (first 88 a.a.r. of Isol were missing from Is02), or three
computationally mapped potential isoforms. The ONT approach
enabled detection in the liver at the levels of transcription of 0.67
and 4.85 TPM units for the isoforms with accession numbers
NX Q32NCO0-1 and NX Q32NC0-2, respectively.

Illustratively, regarding C18orf21, the Sashimi plot was
produced to depict the splicing junctions observed by ONT
MinilON and Illumina HiSeq technologies (see Supplementary
material Fig. S3). Four exons were observed, connected by
three solid splice junctions with certain alterations of splice
junctions between the first and second exons. The sequence of
the proteotypic peptide was observed at the third exon, being
safe from the splicing perturbations. We used the standard
file of the transcriptome data, which indeed could not resolve

the unexpected splicing events. The deficiency of splicing
information should be seriously considered at the current and
forthcoming phase of C-HPP.

CONCLUSIONS

The expression of approximately 50%—60% genes
(depending on the biospecimen type) was detected simultaneously
by qPCR, Illumina and Oxford Nanopore Technology (ONT)-
based transcriptome sequencing (Supplementary material
Fig. S1). The most sensitive method of qPCR delivered the
expression of 64% of the Chrl8 genes in the liver tissue, and
much more (77%) in HepG2. In total, 92% of the Chr18 coverage
was achieved at the transcriptome level by compiling the data
from different methods and only two types of biospecimens.

Inthe present work, we appended the ONT as the independent
“third vote” to the previous pair of well-established methods such
as qPCR and Illumina sequencing for transcriptomic research.
We examined this problem in detail a sign an example of the
HSBPIL1 gene as a promising target for investigation. Our
choice was further confirmed, because in the July 2020 version
of NeXtProt HSBPIL1 left the pool of missing proteins and
gained the respectful PE1 status.

By analyzing jointly the missing and uPEl proteins, we
distinguished C18orf21 to study its function in the HepG2 cell
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line in the frame of CP50 challenge. The level of transcription of
the gene is elevated up to 10 times in HepG2 cells compared with
that in the liver (see Table 1). Another uPE1 protein — KLHL14
— demonstrated outstanding mRNA expression, comprising 168
mRNA copies in a single HepG2 cell determined by RT-PCR. The
high expression of KLHL14 as a “Stakhanovite gene” of HepG2
was observed in contrast to the absence of its expression in the
individual liver tissues.

We showed significant differences in the transcriptomic
results obtained using different experimental methods: for many
genes, they reached one order of magnitude. If we consider gPCR
as the gold standard, RNA-Seq-based approaches may represent a
reliable method only for qualitative evaluation of gene expression,
whereas quantitative assessment may be significantly biased
because of differences in sample preparation protocols and data
processing pipelines. It was illustrated that, in connection with
the problem of the detection of low-abundant transcripts, there
was also the problem of approaching an actual picture of gene
expression at the transcriptome level, unbiased by the sample
preparation and data treatment procedures.

In this study, we showed the limitations of the correlation
analysis of the quantitative omics data, particularly, its strong
dependency on the choice of the correlation/clustering method.
Spearman’s rank correlation analysis results are more susceptible
to inaccuracies in the RNA-seq analysis of lowly expressed
genes, but Pearson’s correlations are very prone to outliers for
highly expressed genes. In any case, a great random component
contributes to the results.
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I'EHBI « CTAXAHOBIIbI» 18 XPOMOCOMBI YEJIOBEKA, OTCYTCTBYIOIIME BEJIKU 1 HE
OXAPAKTEPU30BAHHBIE BEJIKU B TKAHUA MEYEHU U KJIETOYHOW JIMHAW HEPG2
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OtcytcTBytonue Oesiki ¥ (PYyHKIMOHAIBHO HE OXapaKTepH30BaHHBIC OCNIKM (B aHIVIOA3BIYHOW JMTepaType o0O3HA4YeHHBIE KaK missing
(MP) u functionally uncharacterized proteins (uPE1), coOTBETCTBEHHO) COCTaBISIIOT MeHee 5% OT ol1iero yucna GeIKoB, KOAUPYEMBIX TeHaMH
18 xpomocoMel uenoBeka. B TeueHue noiyrona, HaunHas ¢ sHBaps 2020 roma, B Bepcuu NextProt BbIpocio konudecTBO 3amuceil B Habopax
nanabix MP+uPEL. ITono6HbIe H3MEHEHUS 00YCIIOBICHBI MPEUMYIIIECTBEHHO OCTHKCHUSAMH MPOTCOMUKH Ha OCHOBE aHTUTEN. B nanHol pabote
konmdectBerHas [1L[P, Texnonorun cekBenupoanus Illumina HiSeq u Oxford Nanopore Technologies 6buTH MpUMEHEHBI AJIsI CPABHUTEIBLHOTO
aHaJM3a TPAHCKPHUIITOMHOTO Mpoduis 00pa3loB IEYeHH TPEX JOHOPOB MYIXKCKOIo mojia U kietouyHoi nuaun HepG2. AHanu3 maHHBIX amiaca
akcnpeccun (Expression Atlas, EMBL-EBI) u momy4eHHBIX pe3ylbTaToOB MO OMOJOTMYCCKHM 00pasiiaM ¢ HCIOJIb30BaHHEM OPTOTOHAIBHBIX
METO/IOB aHalM3a TPAHCKPUITOMA IOKa3all, YTo B KiIeTKax redeHd u HepG2 ypoBeHb SKCIPECCHH I'€HOB, KOAMPYIOMUX (YHKIHOHAIBHO HE
oxapakrepu3oBanHble Oenky (UPE1), HaxomuTcst Ha TakoM jke HU3KOM YPOBHE, KaK | B ciiy4ae reHoB MP (B konmmuecTBe MeHee | KOIMY Ha KIETKY).
HUckirouenne cocraBmmm Heckonbko renoB: HSBPIL1, TMEM241, C18orf21 n KLHL14. ComacHO CyIIEeCTBEHHBIM PAacXOXICHUSIM B paHee
HOJyYSHHBIX TOIYKOJIMYECTBEHHBIX JAAaHHBIX 110 SKCIIPECCHU I'€HOB M JaHHBIM B OTKPBITHIX 0a3ax IaHHBIX, M3HAYaJIBHO IIPEIIOJIarajgoch, 4To
akcnpeccust reHoB UPE1 moxer ObiTh BhIlle, ueM reHoB MP. ITono6HOoe pacxokieHne noOyauiao oOpaTUThCs K TPAHCKPUITOMY 18 XpoMOCOMEI
yeJoBeKa, sBJstoleiics neneBoii st Poccun B mpoekre «IIporeom uenoBekay. [lomyueHHbIe pe3ynbTaThl 0 HanboIee IKCIPECCUPYEMBIX TeHaX
U JajdbHEHIINI KOPPEIMOHHBIA aHAJIN3 MOKa3all CYIIeCTBOBaHHME 3aBUCUMOCTH OT MeToda skcrpakuuu MPHK n ananuriyeckoit miaropmsl.
AHanM3 3KCIPecCHH LeNieBbIX IeHoB 18 xpomocoMmsl ¢ npuMmeneHneM koindectBeHHOW [ILIP (QPCR) m MeTom0B BBICOKONPOH3BOIMTEIBHOTO
npodunrposanus Tpanckpuntoma (Illumina HiSeq u ONT MinlON) a5t oarHaKOBBIX HAOOPOB 00Pa3I[0B HOPMAJTIBHOM TKAHH TIEUCHH U KIICTOUHOMN
muanu HepG2 BeisBuia Gonee 250 (92%) Genok-KoAMPYOINX T€HOB, AETEKTHPYEMBIX XOTS Obl OJHUM METOOM. Dkcrpeccus Oonee yem 50%
0EITOK-KOMPYIOIUX TeHOB OblIa IETEKTUPOBaHa BCEMH TpeMsi MeTonaMu. KoppensuoHHbIi aHanu3 npoduiieil SKCIpeccuy reHoB MoKasall, 4To
PEe3yIbTaThl «TPYHIUPYIOTCS» B 3aBUCUMOCTH OT THIA OMOJIOTMYECKOTO MaTepHana M KCHEPHMEHTAJIbHBIX METO/IOB, B YACTHOCTH OT criocoba
noxroroBku Oubnmuorexu (Boyaenenus kJJHK, MPHK). 3aBucumocts ot BeIGOpa crocoba GuonHdpopmarnueckoid o0paboTku ObUla OTMEYEHa B
3HAYUTEJIbHO MEHBIICH CTENICHH.

KoaroueBbie cioBa: mpoekt mporeom uyenoseka; C-HPP; tpanckpunrtom; Oxford Nanopore Technologies; Illumina; PHK-
CCKBCHUPOBAHUEC, IPOTCOTUITUYCCKUEC NNETITUABI; OTCYTCTBYIOLINE 6em<1/1

OUHAHACUPOBAHUE

Pa6ota BeImonHeHa mpu noaaepxkke rpanta Poccuiickoro Hayunoro ®@onga 20-14-00328 ¢ ucmonab3oBaHueM 000pyIOBaHHUS IICHTPA
«T'enom» EUMB PAH (http://www.eimb.ru/rus/ckp/ccu_genome_c.php).
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