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Missing (MP) and functionally uncharacterized proteins (uPE1) comprise less than 5% of the total number of proteins encoded by human 
Chr18 genes. Within half a year, since the January 2020 version of NextProt, the number of entries in the MP+uPE1 datasets changed, mainly 
due to the achievements of antibody-based proteomics. Assuming that the proteome is closely related to the transcriptome scaffold, quantitative 
PCR, Illumina HiSeq, and Oxford Nanopore Technology were applied to characterize the liver samples of three male donors in comparison with 
the HepG2 cell line. The data mining of the Expression Atlas (EMBL-EBI) and the profiling of biopsy samples by using orthogonal methods of 
transcriptome analysis have shown that in HepG2 cells and the liver, the genes encoding functionally uncharacterized proteins (uPE1) are expressed 
as low as for the missing proteins (less than 1 copy per cell), except the selected cases of HSBP1L1, TMEM241, C18orf21, and KLHL14. The initial 
expectation that uPE1 genes might be expressed at higher levels than MP genes, was compromised by severe discrepancies in our semi-quantitative 
gene expression data and in public databanks. Such discrepancy forced us to revisit the transcriptome of Chr18, the target of the Russian C-HPP 
Consortium. Tanglegram of highly expressed genes and further correlation analysis have shown the severe dependencies on the mRNA extraction 
method and the analytical platform. Targeted gene expression analysis by quantitative PCR (qPCR) and high-throughput transcriptome profiling 
(Illumina HiSeq and ONT MinION) for the same set of samples from normal liver tissue and HepG2 cells revealed the detectable expression of 
250+ (92%) protein-coding genes of Chr18 (at least one method). The expression of slightly more than 50% protein-coding genes was detected 
simultaneously by all three methods. Correlation analysis of the gene expression profiles showed that the grouping of the datasets depended almost 
equally on both the type of biological material and the experimental method, particularly cDNA/mRNA isolation and library preparation. 
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INTRODUCTION

The Chromosome-Centric Human Proteome Project 
(C-HPP) [1] is currently in a mature state with a rough benchmark 
of 85% of the human proteome covered throughout different 
tissue/cell types [2]. The remaining portions of the uncovered 
proteome are challenging because of two issues. First, there are 
missing proteins never detected by mass spectrometry (MS) 
or antibodies (Ab)-based experiments at the trustable level of 
confidence [3]. Second, some proteins were sometimes detected 
in a certain type of biospecimen, but without any clear function. 
Although the segregation of the unexplained proteins into two 

groups is obviously convenient, missing and uPE1 proteins from 
tissues or cells appear similar by the equally low level of mRNA 
expression. Moreover, according to NextProt releases, missing 
proteins sometimes pass into the uPE1 category, and such 
transfer confers the ultimate task of the current phase of C-HPP. 
We hypothesized, that missing and uPE1 proteins might not be so 
different from the viewpoint of C-HPP mass-spectrometry pillar, 
particularly if specific biospecimens are analyzed. 

For the human chromosome 18 genes (Chr18, the Russian 
C-HPP consortium [4]), the baseline metrics to the beginning 
of 2020 included 265 protein-coding genes (PE1-PE4), among 
which protein evidence of the level PE1 was available for 
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252, 13 proteins were missing and 10 had a uPE1 status. This 
list of 23 proteins (10 PE2, 12 PE3 and just one PE4) became 
our targets for the neXt-MP50 and CP50 challenges [2]. To 
capture highlighted targets, in this study we relied upon the new 
sequencing technology of the Oxford Nanopore enhanced by 
further targeted data mining for the missing and uPE1 proteins. 

The absence of some proteins could be reasonably 
attributed to alterations in the primary structure [5], when 
proteotypic peptides can accidentally fall into the splice 
junctions, or carry nonsynonymous polymorphisms, affecting 
the peptide retention time and mass-to-charge ratio in the LC–
MS/MS analysis. Thus, the increased accuracy of transcriptome 
data became ultimately essential, despite many studies already 
published on the chromosome-centric transcriptome to proteome 
mapping, including those from our group [6, 8], from the 
Spanish Proteome society [9], reports on Chr9 [10] and Chr17 
[11], and also the report on the transcriptome-to-translatome-
to-proteome contribution from the Chinese consortium [12]. 
Inspired by C-HPP work tasks a corpus of bioinformatics tools 
[13, 14] and databases [15, 16] was developed to manage the 
transcriptomes. However, little attention was paid to the problem 
of the reliability of the underlying transcriptome data. In most 
cases, the transcriptome was analyzed by a single method—e.g., 
RNA-Seq—and at best validated by a second method—e.g., 
by quantitative PCR. For example, SOLiD technology was 
applied for the whole-transcriptome analysis of HepG2 cell 
lines and liver tissues [17] (these biomaterials were proposed 
by the Russian C-HPP Roadmap [4]) and validated by only 45 
selected mRNAs by droplet digital PCR (ddPCR). Some other 
data included Illumina GaIIx and SOLiD profiling of Chr18 [7] 
but should be considered as outdated due to the novelties in the 
next-generation sequencing (NGS) platforms.

Validating the transcriptome versus the proteome by 
quantitatively correlating gene product abundance [18, 19] was 
an attractive idea. The Chr18 consortium (Russia) investigated 
such an approach in detail. In capturing the transcriptome 
to proteome relationships researches usually rely on general 
arguments referring to NGS platform dependence of experiments, 
gene-to-gene difference in effectiveness of transcription, the 
rate of protein synthesis and degradation and so on [20, 21], 
binding all these claims to the whole genome, not to a single 
chromosome. Contrastively to the whole genome assumptions, in 
the report [22] the chromosome-centric transcriptome to proteome 
correlations were analyzed. The mRNAs levels were determined 
independently by quantitative PCR (qPCR) of Chr18 genes, and 
then supported by the next-generation sequencing on Illumina and 
SOLiD platforms and further by the shotgun MS data. Actually, 
studies in the field of Chr18 transcriptome profiling and targeted 
proteome mapping in liver tissue and HepG2 cells [6] revealed 
a poor correlation between transcriptome and proteome data. 
Radko et al. [8] investigated to which extent the targeted PCR-
based transcriptome mining could contribute to the problem of the 
missing proteins, encoded by human Chr18 genes. A summary of 
these chromosome-centric efforts revealed the unexpectedly low 
quantitative correlation, with no satisfactory explanation [5].

To create at least some ground for the analysis of missing 
and uPE1 species, we have reanalyzed the transcriptome of 
Chr18 to gain more accurate data and assess the level of errors in 
such data by comparing the results from different platforms used 
for transcriptome quantitation. We recruited the gold-standard 
method of quantitative PCR (RT-PCR and ddPCR) together with 
well established HiSeq/Illumina. In addition to these methods, 

the recently emerged sequencing method articulated itself as 
the Oxford Nanopore Technology (ONT) was recruited here 
for C-HPP by using an ONT MinION sequencer [23], the low-
cost portable sequencing machine. The technology produces 
lengthy reads up to 104 nucleotides (nt) advantageously to the 
Illumina platform, which could obtain reads of 50- to 300-
nt long. However, the disadvantage of ONT is that long reads 
contain errors at the rate of approximately 3-5 lost or misread 
sites per 100 sequenced nt. ONT sequencing was characterized 
in genomics by reading up to 70 thousand nt, at the transcript 
level the read length was naturally limited by the mRNA length 
and quality. For the first time, this technology was applied to the 
human transcriptome [23] to analyze seven human cell lines and 
a set of tissue samples, including that of the human liver. For the 
LC2/ad cell line, the ONT performance was compared to short-
read RNA-seq data with a reasonably good correlation (rp=0.88) 
between the methods. Authors [23] have thoroughly compared 
the expression levels of selected genes and found a significant 
correlation (rp=0.82) between ONT and qPCR, suggesting the 
ONT MinION is suitable for the quantitative assessment of the 
human transcriptome.

Herein, by analysis of 3 samples of healthy livers and 
hepatocyte-related HepG2 cells, we pursued a double task. We 
have compared the three methods of transcript identification and 
quantification to understand, taking the Chr18 transcriptome 
as an example, the extent to which the quantitative profiles are 
consistent within the same biological sample. This question must 
be answered before explaining the poor transcriptome-proteome 
correlation. 

MATERIALS AND METHODS

Human liver samples and HepG2 cells

Samples of human liver were collected at autopsy from 3 
male donors (designated further as donors #1, #3, and #5) aged 
65, 38, and 54 years. The donors were HIV and hepatitis free, 
and the sections had no histological signs of liver diseases. 
The postmortem resected samples were immediately placed 
into RNAlater RNA Stabilization Solution (“Thermo Fisher 
Scientific”, USA) and stored at -20°C until further use.

HepG2 cells (ATCC HB-8065, “ATCC”, USA) were grown 
to approximately 80% confluence and harvested. The cells were 
washed 3 times with PBS, counted using an EVE automated cell 
counter (“NanoEntek”, South Korea), pelleted by centrifugation, 
and kept in liquid nitrogen until further use.

Transcriptome profiling using reverse transcription qPCR

Transcriptome profiling with qPCR, total RNA was performed 
using liver tissue samples and HepG2 cells using the RNeasy Mini 
Kit (“Qiagen”, Germany) according to the manufacturer’s protocol. 
The on-column DNase digestion step was performed using the 
RNAse-Free DNase Set (“Qiagen”). The isolated total RNA was 
quantified using a Qubit 4 fluorometer and the Qubit RNA HS Assay 
Kit (“Thermo Fisher Scientific”), and the RNA quality was assessed 
using a Bioanalyzer 2100 System (“Agilent Technologies”). The 
RIN numbers for all preparations of total RNA were 7.5 or higher. 
Synthesis of cDNA was carried out using the AffinityScript qPCR 
cDNA Synthesis Kit and random primers (“Agilent Technologies”) 
according to the manufacturer’s recommendations. The cDNA 
samples were stored at -20°C until further use.
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The amount of each transcript encoded on Chr18 was assessed 
by measuring the number of copies of pertinent cDNA in the 
cDNA preparation derived from total RNA. qPCR was conducted 
in two formats—droplet digital PCR (ddPCR, 49 transcripts) 
and PCR in real time (PCR-rt, 226 transcripts)—employing the 
earlier designed set of primers and probes [22, 24], with minor 
exceptions. While ddPCR was performed as described previously 
[22, 24], the transcriptome profiling by PCR-rt was carried out 
using the ΔCt method [25]. 

To calculate the copy number of a transcript per cell, the 
copy number per PCR probe was normalized by dividing it by the 
amount of total RNA in the PCR probe (200 ng). The number of 
transcripts per nanogram of total RNA was brought to the copy 
numbers per cell based on the amount of total RNA in hepatocytes 
and HepG2 cells, reported to equal 40 pg/cell [26].

Illumina HiSeq sequencing and bioinformatics analysis

Total RNA was isolated using the Extract RNA kit (“Eurogen”, 
Russia). RNA quality was evaluated using the Bioanalyzer 2100 
System (“Agilent Technologies”). The RIN numbers varied from 
7.3 to 9.1. Clustering and sequencing were carried out using the 
Illumina HiSeq 2500 system (2 lanes per 8 samples) according 
to the manufacturer’s protocols (Denature and Dilute Libraries 
Guide, Sequencing in Rapid Run Mode). For each replicate, we 
derived from 32 to 59 million reads.

The derived fastq files were analyzed by FastQC and then 
were processed by Trimmomatic. The read mapping and expression 
quantification were carried out employing STAR 2.7 (splice-aware 
mapping to genome), bowtie2 (mapping to transcripts), RSEM 
1.3 (quantifications of the reads), and Salmon (quasi-mapping 
and quantification) software packages. The genome GRCh38.p12 
assembly (Ensembl release 97) was used as a reference. Finally, 
we compared the results obtained with STAR-RSEM, bowtie2-
RSEM and Salmon, calculated the Spearman/Pearson correlation 
coefficients and created clustering dendrograms. The distance 
between samples/pipelines (i.e., dissimilarity rate) was evaluated 
as 1–corr.coeff. To create dendrograms, we used the complete 
linkage hierarchical clustering method.

The sequencing data obtained in this study is available at 
NCBI Sequence Read Archive (BioProject ID PRJNA635536).

MinION sequencing of HepG2 cells and liver transcriptomes

Total RNA was isolated and characterized as for qPCR 
analysis. The extraction of mRNA from the total RNA preparations 
was conducted using the Dynabeads™ mRNA Purification 
Kit (“Thermo Fisher Scientific”) following the manufacturer’s 
recommendations. The mRNA preparations were immediately 
frozen and stored at -80°C until nanopore sequencing.

Nanopore sequencing was carried out using the MinION 
sequencer (“ONT”, UK) with FLO-MIN107 flow cells and R9.4 
chemistry and the Direct RNA sequencing kit (SQK-RNA002, 
“ONT”). The sequencing libraries were prepared strictly following 
the manufacturer’s protocol with a single exception: 750 ng of 
mRNA (poly+ RNA) was used as the input in both samples from 
human liver and HepG2 cell instead of the recommended 500 
ng. The SuperScript III Reverse Transcriptase (“Thermo Fisher 
Scientific”) was used for reverse transcription and NEBNext, 
Quick Ligation Module (“New England Laboratories”, UK) was 
used for end repair and ligation. The Agencourt RNAClean XP 
magnetic beads (“Beckman Coulter”, USA) were employed for 

nucleic acid purification.
The mRNA from HepG2 was sequenced in a 72-h single 

run. The output was 0.75-Gb sequenced transcripts (0.766 
million reads) with a median length of 1.56 kb. The mRNA from 
the tissue liver of donor #1 was sequenced for 26 h. The flow cell 
was regenerated using the Flow Cell Wash Kit (“ONT”), strictly 
following the manufacturer’s guidance. Next, the newly prepared 
sequencing library from the liver mRNA of donor #1 was loaded 
on the flow cell and a 48-h sequencing run was initiated. The 
overall output was 1.44 million reads with a median length of 
1.37 kb.

The fast5 files produced by MinION were uploaded onto the 
Amazon Web Services ElasticCloud2 and processed using the 
GPU-powered (Nvidia Tesla V100) virtual instance p3.2xlarge 
(8x2.7 GHz vCPUs, 1 GPU) by the ONT-provided basecalling 
software guppy_basecaller [27] with parameters “-flowcell FLO-
MIN107 -kit SQK-RNA002”. Further pipelines included the 
quality control by the MinIONqc.R script, followed by mapping 
the reads onto the gencode.v32.transcriptome using minimap2 
v. 2.17 [28]. The overall statistics of alignment mapping 
was produced using the “samtools stats” command, and the 
quantitative data were further collected by executing the program 
Salmon. 0.12/1.1.0 with the command line options “quant -p 8 
–noErrorModel” [29].

RESULTS AND DISCUSSION

Overview of Chr18-coded missing and uPE1 proteins

To characterize transcription of genes encoding uPE1 and 
MP, we performed analysis using the Oxford Nanopore system. 
In total, 1.5 million reads were obtained for liver cells, and more 
than 80% of these reads were successfully mapped to the human 
transcriptome version v32. Data for the same samples were 
collected using the orthogonal platforms Illumina (hereafter also 
called HiSeq) and quantitative PCR.

The transcripts of the uPE1 proteins were expected to be 
detected at more than the transcripts encoding the missing proteins. 
However, the experimental data indicated the opposite: the level 
of protein transcription in both groups was comparably low. 
For example, for the uPE1 proteins TMEM200C and KLHL14, 
15 TPM and 7 TPM were observed, respectively. The average 
expression level (for the values: TPM>0, n=8) was 4.48+2.67 
TPM and 4.69+1.17 TPM for transcripts encoding missing and 
uPE1 proteins, respectively.

We compared the values of the expression level of the studied 
group of genes (MP+uPE1) with the data obtained using alternative 
methods (Supplementary material Table S1). We confirmed, using 
both Illumina HiSeq and quantitative PCR, that the transcripts are 
expressed at an extremely low level, close to the detection limit. 
Thus, regarding the transcriptome of the studied biomaterials—
that is, the liver and HepG2 cells—the genes encoding missing 
and uPE1 proteins were similar in the expression level and could 
be analyzed together.

The use of the EMBL-EBI’s gene ExpressionAtlas [31] 
database revealed that the genes encoding the missing proteins 
are not expressed at a significant level in any of the analyzed 
tissues. For example, the highest values for the ELO3B gene 
reached a negligible level of 2 TPM in the choroid plexus, and 
HMSD, the most expressed gene, reached 11 TPM in the spinal 
cord and 14 TPM in transformed lymphocytes. However, genes 
encoding uPE1 proteins in some tissues reached 3–5 times higher 
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values than the maximum values for missing protein transcripts: 
ANKRD29 reached 71 TPM in the lymph nodes or up to 57 TPM 
for a gene in the thyroid gland [31].

Confirmation of the above observations was found in 
ProteinAtlas. In the liver tissue and HepG2 cells, the transcription 
level of the uPE1 coding genes and missing proteins was 
comparatively low; however, in at least 1–2 tissues, the uPE1 
proteins were expressed pronouncedly at the level of several 
dozen TPMs. An interesting observation was the TMEM241 gene, 
which, according to the data of RNA-Seq from ProteinAtlas, 
demonstrated little expression in the HepG2 cell line at the level 
of 5 TPM, producing zero values in all the samples by both 
sequencing methods used herein but was detected as low as 2.5 
copies of cDNA per cell using ddPCR.

The pronounced differences between uPE1 and missing 
proteins were observed in the NextProt portal and the associated 
PeptideAtlas resource: the uPE1s were usually highly populated 
using unique natural peptides, with little or no missing proteins. 
Notably, one missing protein (CTAGE1) from the number of 
missing proteins does not have unique proteotypic peptides 
during tryptic hydrolysis. Two other proteins demonstrated one 
proteotypic peptide each: the ANKRD30B protein peptide was 
found in prostate cancer samples [33], and the proteotypic peptide 
for HSBP1L1 was found in HepG2 cell samples [30].

Comparison of the NextProt releases from January and 
July 2020 revealed the transfers of proteins encoded by human 
Chr18. The SMIM21 protein has moved from the missing protein 
category to the uPE1 category. SMIM21 is characterized as 
“expression level 3” according to ProteinAtlas data, at a high level 
of normalized expression of mRNA NX=5.0 in the brain cancer 
line. Another protein, encoded by the C18orf65 gene, changed 
its category from PE2 to PE5, leaving the ranks of the missing 
proteins encoded by chromosome 18 genes.

For the HSBP1L1 protein (74 a.a.r.), PeptideAtlas suggests 
one proteotypic peptide 24 a.a.r. long. It was detected in HepG2 
and LNCaT cell lines by Professor Mann’s group [30] using the 
deep proteome coverage (8–12 thousand protein groups in the 
identification list) with the original SPIDER technology of low-
loss digest mixture separation. Information has been published 
about the involvement of this gene in the development head and 
neck cancer [34], pancreas adenocarcinomas [35]. HSBP1L1 
is involved in chemical hepatocyte injury [36], prioritizing this 
target to investigate the genetic aspects of liver diseases. In 
the July 2020 version of NextProt, this protein was transferred 
from the PE2 (e.g. missing proteins) to PE1 category, with the 
functional annotation at the “silver” level. To our knowledge, this 
transfer has not yet been confirmed by mass spectrometry data in 
accordance with the criteria of the guidelines of version 3.0 [37], 
at the same time MS-based support was delivered by top-down 
proteomics [38] in HeLa cells. 

So, at the time of this writing, the updated version of 
NextProt included 9 missing genes and 11 genes characterized as 
uPE1 from Chr18.

The KLHL14 (uPE1) gene, represents a special case. 
According to results obtained by different methods, its transcripts 
were not detected in all biosamples, except the HepG2 sample, 
where its expression level measured by quantitative PCR was 
reported as 116 copies per cell. The expression level of the 
housekeeping gene ATP5F1A was comparable: 324 copies of 
cDNA per one HepG2 cell on an average.

To rely on transcriptome data for the analysis of MP and 
uPE1 proteins encoded by chromosome 18 genes, exhibiting low 

transcription levels, it is necessary to confirm the reliability of the 
basic data. In view of this assumption we considered the datasets 
in two ways: comparison of the list of highly expressed genes – 
“Stakhanovite genes” [39] and deciphering a degree of correlation 
between analytical methods. “Stakhanovite genes” are named 
after the Soviet coal miner Alexey Stakhanov renowned for his 
outstandingly hard everyday work. 

We present a parallel between the expression of genes 
which are everyday hard-workers, in contrast to the genes which 
are smart-workers. The smart-working genes are not as highly 
expressed but are regulating the whole process [32].

“Stakhanovite genes” of Chr18

MP and uPE1 proteins encoded by the human Chr18 are 
characterized by low expression of corresponding genes in the 
liver and HepG2 samples. To estimate the contribution of error 
in the sample preparation and measuring methods, we started 
not from the low expressed transcripts, but, oppositely, from 
the extremely high abundant ones produced by “Stakhanovite 
genes” (Fig. 1). 

Supporting Information Table S2 shows five of the leading 
“Stakhanovite genes” for each sample studied, exhibiting the 
highest levels of expression as revealed by ONT MinION, 
Illumina HiSeq, and qPCR analysis. These 5 topmost genes are 
responsible for a substantial part of the total mRNA abundance. 
For example, in the case of ONT MinION sequencing, more 
than 95% of the total mRNA abundance was attributed to the 
corresponding “Stakhanovite genes” in both HepG2 cell and liver 
samples. In this case, the RPL17 gene encoding 60S ribosomal 
protein L17 — a component of the ribosomal complex—leads 
the list of “Stakhanovite genes” for HepG2 cells. The gene 
encoding transthyretin, TTR, has demonstrated the highest 
expression in the liver, that secretes blood plasma components. 
In addition to RPL17, other housekeeping genes were revealed 
by ONT sequencing: MYL12A and MYL12B encoding chains 
of the motor protein myosin, ATP5F1A encoding the ATP-
synthase subunit alpha responsible for the energy generation 
in mitochondria, and CYB5A encoding cytochrome b5, the 
membrane-bound electron carrier. Among these genes, 4 top 
genes were common for HepG2 cells and liver tissue, showing 
a considerable level of qualitative concordance between the 
biological samples of different origin.

Illumina HiSeq sequencing also revealed some level of 
qualitative concordance among the “Stakhanovite genes” for 
HepG2 cells and liver tissue samples: TTR and RPL17 were 
expressed in all liver samples and HepG2 cells, NDUFV2 as well 
as MYL12A were present in HepG2 and at least in two of three 
liver samples (Fig. 1 and Supplementary material Table S2). The 
similar level of qualitative concordance among “Stakhanovite 
genes” was found between the liver samples studied. For qPCR 
analysis, a relatively high level of matching was observed for 
the subsets of “Stakhanovite genes” among liver tissue samples: 
a coincidence of 4 of 5 or even 5 of 5 among the lists of highly 
expressed genes. Surprisingly, the level of concordance between 
the subsets of “Stakhanovites” revealed by two sequencing 
platforms, ONT MinION and Illumina HiSeq, was rather 
moderate: only 4 items were shared between HepG2 cells and the 
liver sample, TTR, RPL17, MYL12A and CYB5A were among 
them. A similar situation was observed for the liver sample 
when the ONT MinION or Illumina HiSeq data were compared 
with the qPCR data: only 3 of 5 top genes coincided. When the 
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qPCR data were compared with the HiSeq dataset for the liver 
tissue samples of donors #3 and #5, only 2 matching hits were 
identified (out of 5 selected “Stakhanovite genes”). Moreover, 
for HepG2 cells, no concordance was found between the subset 
of “Stakhanovite genes” revealed by qPCR and those revealed 
by either the ONT MinION or Illumina HiSeq sequencing 
(Supplementary material Table S2).

The leaves of the dendrograms in Fig. 1 correspond to the 
highly expressed genes of Chr18 (topmost 13 expressed genes, 
appeared in at least one sample in the Supporting Information 
Table S2, were taken for this analysis). Clustering was 
performed based on the distance metrics, which corresponded 
to the difference in the values of gene expression, therefore, 
the closer were leaves at the tree, the more similar were the 
estimations of expression (either FPKM, copies of cDNA per 
cell or TPM). 

Fig. 1A represents the results of the analysis using two 
different methods for the same liver sample. The leaves were 
severely mixed between clusters, which were visually observed 
as crosses between edges connecting two dendrograms. Among 
the 10 probed genes, only two pairs preserved their closeness 
in both dendrograms: MAPRE2 neighboring AFG3L2 and 
subcluster MYL12 subunits A and B. No such neighboring was 
observed when different samples were compared by a single 
method, the ONT (Fig. 1B). The assessment of entanglement 
as a measure of concordance between dendrograms produced 
similarly low values of 0.31 and 0.28 for Fig. 1A and 1B, 
respectively. Thus, working within a single chromosome of 
265 protein-coding genes, even for the case of highly expressed 
genes, the relationship between the quantitative estimations of 
the expression level was highly discordant. Although this finding 
may be expected for the samples of normal liver and HepG2 
cells derived from hepatoblastoma, it was rather surprising to 
find such disparity in the results acquired from the same sample 
analyzed using different methods. 

Correlations of chromosome-centric transcriptome datasets 

Different methods of transcriptome analysis may give 
different results [7, 17, 41]. At the genome scale, the frequency of 
RNA-Seq transcripts provides clues for MS identification of the 
corresponding protein [42]. However, the feature of chromosome-
centric quantitative transcriptomics (presumably of quantitative 
proteomics as well) is that when the number of genes is reduced 
compared with that in the genome, the admissible correlations 
can be severely affected. This can be especially true for Chr18 
with a rather small number of genes. 

Regarding qPCR, 235 of 275 transcripts encoded on Chr18 
were identified in both HepG2 cells and the liver samples of 
each of three donors, while 16 transcripts were detected neither 
in HepG2 cells nor in the liver samples of any of the donors 
(Supplementary material Table S1 and Fig. S1). Furthermore, 14 
transcripts were not found in HepG2 cells but were observed in a 
liver sample of at least one donor, and 10 transcripts were present 
in HepG2 cells but not in a liver sample of at least one donor 
(Supplementary material Table S1). For common transcripts 
of HepG2 cells and the liver samples, a good correlation was 
observed between the levels of the Chr18 log-transformed gene 
expression values (Supplementary material Fig. S2.1, panels A 
to C). The values of the Pearson correlation coefficient, rp, are 
within the narrow interval of 0.76–0.79, agreeing well with 
the previously obtained rp value of 0.78 for the ‘HepG2 cells 
vs. pooled liver sample’ correlation [22]. At the same time, 
the correlations between the transcript abundances in the liver 
tissue between donors were found to be strikingly high: rp = 
0.963–0.966 (Supplementary material Fig. S2.1, panels D to 
F). Similar to qPCR data, a higher correlation was observed 
between gene expression profiles derived with Illumina HiSeq 
(log-transformed FPKM values) in liver tissue samples – rp = 
0.827-0.925 (Supplementary material Fig. S2.2). Liver gene 
expression, quantified by the Illumina HiSeq, was also well 

Figure 1. Tanglegram of the most heavily expressed “Stakhanovite” genes with (a) different methods and one sample (human liver) and (b) by 
the same method, applied for different biospecimens (liver versus HepG2 cell line). Dendrograms were obtained using differences between the 
estimations of the expression levels as measured by qPCR, Illumina HiSeq and ONT methods and scaled for convenient representation.
* indicates the most highly expressed genes.
Dendrograms were built using Ward’s clustering and the Euclid distance between log2-transformed data. The Dendextend package [40] was used to 
draw tanglegrams and compute entanglement. 
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correlated with that in HepG2 cells: rp values were within the 
interval of 0.691–0.812 and agreed with those obtained by qPCR 
profiling (Supplementary material, Fig. S2.2 vs. Fig. S2.1).

Compared with the short-read sequencing such as Illumina, 
the long-read ONT sequencing is a relatively new technology. 
It should be considered as orthogonal to HiSeq, and different 
bioinformatics analyses are eventually required to treat the 
raw data. Although the LAST and BWA algorithms (originally 
developed for the mapping of short reads [42, 43]) were also 
employed for ONT data processing [23], the minimap2 tool [44] 
is nowadays widely used for long noisy read mapping.

Thus, we prepared three datasets from the orthogonal 
methods and performed correlation analysis supplied with a 
cluster dendrogram (Fig. 2, Supplementary material Table S3).

The upper triangle of the matrix in Fig. 2 contains the 
Spearman correlation coefficient between the gene expression 
values determined by qPCR (number of cDNA copies per cell), 
Illumina HiSeq, and ONT. Additionally, we calculated Pearson 
correlation coefficients (lower triangle of the matrix, Fig. 2, 
Supplementary material Table S2) for the expression values, 
which were square root transformed to reduce the dominant 
effect of highly expressed genes. The dendrogram was created 
based on the Spearman rank correlation coefficients (hierarchical 
clustering using Ward’s D2 method).

In this study, we also included our previous results 
[24], which were obtained using Illumina GaIIx and Applied 
Biosystems SOLiD platforms for the HepG2 cell line (denoted 
as Hep13 in Fig. 2, originating from a different source than the 

Figure 2. Cross-correlation matrix between gene expression datasets obtained for liver tissue and HepG2 cell line samples from different sources and 
harvested in our previous work in 2016 (Hep13, Liv13) and current work (Hep20, Liv20). The indices d1, d3 and d5 for Liv20 indicate the particular 
individuals (donors of postmortem liver samples). SRA datasets: Hep13 - SRX395473 (2013) and SRX390071 (2014), Liv13 - SRX267708 (2013).
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HepG2 cells used in the current study) and from the pooled sample 
of three human livers (denoted as Liv13).

As can be seen from the dendrogram (Fig. 2), the gene 
expression profiles are clustered into four groups. The division 
occurs at the level of the methodology: the first cluster was 
attributed to quantitative PCR method, while other three 
clusters accommodate the results of next-generation sequencing. 
Furthermore, to a lesser extent, in the case of qPCR, a separation 
occurred according to the type of biological material. In the 
case of sequencing, a separation occurred according to both the 
biomaterial type and cDNA/mRNA library preparation method. 
These findings are presented more clearly in the Supplementary 
material Table S3, which includes data on technical replicates and 
various RNA-Seq data processing pipelines. At the same time, 
clusters 2 and 3 combined the data from various platforms—
Illumina GaIIx, AB SOLiD, and ONT MinION. These libraries 
were prepared by polyA mRNA isolation using magnetic 
microbeads. Finally, cluster 4 included data on HepG2 and liver 
samples prepared using polyA amplification.

One possible reason for this discrepancy between library 
prep techniques may be a difference in RNA integrity. Low 
initial RNA integrity as well as an improper sample preparation 
procedure induces a shift in the density read coverage towards 
the 3′-tail of transcripts when using polyA isolation/amplification 
methods. Thus, we evaluated the differences in the distribution of 
5′-to-3′ read coverage density and fortunately found no significant 
differences between cluster 4 and clusters 2/3 (i.e., between 
polyA mRNA isolation using the microbead technique and polyA 
amplification using MINT reverse transcriptase). The data in 
Supplementary material Table S3 provides information on how 
fragile are dependencies between samples, sample preparation 
methods, bioanalytical platforms and bioinformatics pipeline of 
transcriptome data processing. Such dependencies are usually 
ignored at the whole-genome level. The chromosome-centric 
current phase of discovery of the missing and uPE1 proteins 
appeals to re-think the paradigm at the transcriptome level.

With several exceptions, the Spearman (rank) and Pearson 
correlation coefficients were concordant. The highest Spearman’s 
rank correlation (r = 0.70–0.97) was observed for the qPCR methods 
(cluster 1). Within this cluster, there were two biomaterials—
specific subclusters. Within the clusters in greeny we observed 
the data formed into the groups according to the year of analysis. 
In general, the observed correlation pattern indicated that qPCR 
works much better with low-expression genes than with RNA-Seq 
mainly because of the stochastic noise and discrete nature of gene 
expression values derived with RNA-Seq (i.e., read counts).

Notably, different clustering methods produced different 
results: preferred grouping was observed either by biological 
material or method. However, the close relationship between 
the technical replicates and bioinformatics pipelines remained 
invariant in the dendrograms. Nonetheless, we did not observe a 
perfect match between the results obtained using various genome 
annotations (RefSeq/Ensembl/Gencode) and data processing 
protocols (STAR+RSEM, bowtie2+RSEM, Salmon), as well 
as between technical replications: the Spearman correlation 
coefficient between various data processing pipelines or technical 
replicates ranging from 60% to 97%.

ONT-oriented selection of missing and uPE1 proteins 

We observed a large variability among gene expression 
values derived by RT–qPCR, Illumina and ONT sequencing 

from the same biological sample. However, the present work was 
not intended to clarify the underlying reasons for this variability, 
but we aimed to highlight that a relatively high correlation 
between various datasets derived by whole-transcriptome 
analysis came primarily from the large dynamic range of 
transcript abundances. Despite the sampling was confined by a 
particular chromosome (Chr18, 265 protein-coding genes), the 
dynamic range of transcript abundances was still fairly large. 
Nonetheless, the general correlations may decline (compare the 
values of correlation coefficients in Fig. 4 with those of 0.92 
or 0.9, reported for 18000+ genes by Tyakht et al. [17] or van 
Deft et al. [45], respectively). For a more limited set of genes—
even if these genes are highly expressed such as in the case of 
“Stakhanovite genes”—obvious disagreement occurred in the 
levels of their expression measured by the orthogonal methods 
(tanglegram in Fig. 1A, see also Supplementary material 
Table S2). The dendrogram topologies (the branching pattern 
relationship among individual genes) were quite different for 
the RT–qPCR and Illumina methods (Fig. 1B). For a set of low-
abundance transcripts, one should expect a more profound “noise 
effect”—the apparent well-known fact from whole-transcriptome 
analysis. Additionally, the number of low-abundance transcripts 
is heavily affected by TPM and FPKM threshold values set for 
ONT and Illumina methods, respectively. For example, taking 
the TPM/FPKM threshold values as ≥ 0.1 resulted in ~60% of 
Chr18 transcripts detected by all three methods (Supplementary 
material Fig. S1), while setting the Illumina’s FPKM threshold as 
> 0.1 would result in less than 50% of such transcripts.

Because we learned from the Expression Atlas (EMBL-
EBI) generally and from our own data particularly, that the 
target missing and uPE1 proteins were present in low copies, 
we focused on the presence of a corresponding gene product in 
all samples, detected by all the methods employed. The lower 
is the level of expression, the more nonrandom would be such 
an observation. Therefore, in the low-copy range, correlation 
analysis should be replaced by the unraveling of rarely observed 
events. This enabled us to perform a simple selection of priorities 
for the MP/uPE1 array as follows. 

From the compendium of the ONT-detectable genes, we 
selected those that exhibited nonzero values of TPM in both types 
of biomaterials—i.e., the liver and HepG2. Two missing proteins 
and four proteins with the uPE1 status were obtained (Table 
1). The following information was taken from the neXtProt 
in Table 1: the a.a.r. number of the proteoform designated as 
Iso1 (a canonical sequence, often the longest one), number of 
variant records reported for a given protein as single-amino acid 
polymorphisms, and the number of isoforms (assuming that 
these could be splice forms or processed forms). Table 1 was 
completed by indicating for the selected set of genes the FPKM 
values (Illumina HiSeq), number of cDNA copies (qPCR), and 
TPM values (ONT MiniION). 

Table 1 enabled us to consider interesting cases of the 
HSBP1L1 missing protein and C18orf21, the uPE1 protein. 
Compared with other proteins, these two proteins were covered 
by ONT reads at modest but detectable levels. By contrast, for 
example, the serpin-like protein HMSD was poorly represented 
by the ONT-derived transcripts and undetected by the HiSeq 
NGS platform. Because of negligible detection, the uPE1 
proteins KLHL14 and TMEM200C were discarded. Notably, 
KLHL14 showed an unexpected finding: the qPCR estimation 
was 116 copies per cell, including it in a list of “Stakhanovite 
genes” (Fig. 1). 
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As of January 2020, the heat shock factor-binding protein 
(HSBP1L1) was still missing, probably because of its tiny size 
of only 75 a.a.r.  Additionally, HSBP1L1 was constitutively 
expressed in the liver and HepG2 cells at the level of approximately 
6–7 transcripts per million (roughly corresponding to 1 cDNA 
copy per cell). The values of FPKM were at the level of 3.5 for 
liv.d1, and, remarkably, this protein was also detectable in other 
samples, viz. liv.d3 and liv.d5. 

Another interesting case is was UPF10711 protein, encoded 
by C18orf21 gene. According to the neXtProt record Q32NC0, 
this protein was characterized by two isoforms, Iso1 (220 a.a.r.) 
and Iso2 (first 88 a.a.r. of Iso1 were missing from Iso2), or three 
computationally mapped potential isoforms. The ONT approach 
enabled detection in the liver at the levels of transcription of 0.67 
and 4.85 TPM units for the isoforms with accession numbers 
NX_Q32NC0-1 and NX_Q32NC0-2, respectively.

Illustratively, regarding C18orf21, the Sashimi plot was 
produced to depict the splicing junctions observed by ONT 
MiniION and Illumina HiSeq technologies (see Supplementary 
material Fig. S3). Four exons were observed, connected by 
three solid splice junctions with certain alterations of splice 
junctions between the first and second exons. The sequence of 
the proteotypic peptide was observed at the third exon, being 
safe from the splicing perturbations. We used the standard 
file of the transcriptome data, which indeed could not resolve 

the unexpected splicing events. The deficiency of splicing 
information should be seriously considered at the current and 
forthcoming phase of C-HPP. 

CONCLUSIONS

The expression of approximately 50%–60% genes 
(depending on the biospecimen type) was detected simultaneously 
by qPCR, Illumina and Oxford Nanopore Technology (ONT)-
based transcriptome sequencing (Supplementary material 
Fig. S1). The most sensitive method of qPCR delivered the 
expression of 64% of the Chr18 genes in the liver tissue, and 
much more (77%) in HepG2. In total, 92% of the Chr18 coverage 
was achieved at the transcriptome level by compiling the data 
from different methods and only two types of biospecimens.

In the present work, we appended the ONT as the independent 
“third vote” to the previous pair of well-established methods such 
as qPCR and Illumina sequencing for transcriptomic research. 
We examined this problem in detail a sign an example of the 
HSBP1L1 gene as a promising target for investigation. Our 
choice was further confirmed, because in the July 2020 version 
of NeXtProt HSBP1L1 left the pool of missing proteins and 
gained the respectful PE1 status.

By analyzing jointly the missing and uPE1 proteins, we 
distinguished C18orf21 to study its function in the HepG2 cell 

Table 1. Selected genes of human chromosome 18. First, two genes were annotated as encoding the missing proteins (MPs), while four other genes 
were attributed to the category of functionally uncharacterized but translated to the protein level with high evidence (uPE1). The neXtProt knowl-
edgebase was used to obtain information about the gene status, number of amino acid residues in the sequence of the isoform 1 (the longest one), 
single amino acid polymorphisms (SAPs) according to the dbSNP and COSMIC datasets, and the known splice forms (Iso1, Iso2, Iso3). 

Gene Name HMSD_ HSBP1L1 ANKRD29 C18orf21 KLHL14 TMEM200C
Protein 
Name

Serpin-like 
protein 
HMSD

Heat shock 
factor-binding 

protein

Ankyrin repeat 
domain-containing 

protein 29

UPF0711 protein 
C18orf21

Kelch-like 
protein 14

Trans-membrane 
protein 200C

NextProt 
AC

NX_A8MTL9 NX_C9JCN9 NX_Q8N6D5 NX_Q32NC0 NX_Q9P2G3 NX_A6NKL6

Status MP MP uPE1 uPE1 uPE1 uPE1
# of aa in 

Iso1
139 75 301 220 628 621

variants

(SAPs)

111 56 231 166 385 648

splice forms Iso1 Iso1 Iso1, Iso3 Iso1, Iso2 Iso1, Iso2 Iso1
qPCR (cDNA copies per cell)

Liver #1 0.00** 0.88 0.02 0.37 0.02 0.33
Liver #3 0.01 0.47 0.10 0.33 0.03 0.42
Liver #5 0.02 0.59 0.07 0.22 0.01 0.52
HepG2 ND* 1.10 0.02 2.29 116.38 0.08

Illumina HiSeq (FPKM)
Liver #1 ND* 3.50 0.00** 4.5 0.00** 0.00**
Liver #3 ND* 2.50 0.50 3.0 0.00** 1.00
Liver #5 ND* 6.00 0.00** 1.5 0.00** 2.00
HepG2 ND* 6.50 0.00** 17.5 2.50 0.00**

ONT MinION (TPM)
Liver #1 0.21 6.31 0.13 6.20 0.00** 0.04
HepG2 0.00** 6.94 0.00** 16.00 1.11 0.00**

Note. *No reads observed **Rounded to the second decimal place 
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line in the frame of CP50 challenge. The level of transcription of 
the gene is elevated up to 10 times in HepG2 cells compared with 
that in the liver (see Table 1). Another uPE1 protein – KLHL14 
– demonstrated outstanding mRNA expression, comprising 168 
mRNA copies in a single HepG2 cell determined by RT–PCR. The 
high expression of KLHL14 as a “Stakhanovite gene” of HepG2 
was observed in contrast to the absence of its expression in the 
individual liver tissues. 

We showed significant differences in the transcriptomic 
results obtained using different experimental methods: for many 
genes, they reached one order of magnitude. If we consider qPCR 
as the gold standard, RNA-Seq-based approaches may represent a 
reliable method only for qualitative evaluation of gene expression, 
whereas quantitative assessment may be significantly biased 
because of differences in sample preparation protocols and data 
processing pipelines. It was illustrated that, in connection with 
the problem of the detection of low-abundant transcripts, there 
was also the problem of approaching an actual picture of gene 
expression at the transcriptome level, unbiased by the sample 
preparation and data treatment procedures.

In this study, we showed the limitations of the correlation 
analysis of the quantitative omics data, particularly, its strong 
dependency on the choice of the correlation/clustering method. 
Spearman’s rank correlation analysis results are more susceptible 
to inaccuracies in the RNA-seq analysis of lowly expressed 
genes, but Pearson’s correlations are very prone to outliers for 
highly expressed genes. In any case, a great random component 
contributes to the results. 
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ГЕНЫ «СТАХАНОВЦЫ» 18 ХРОМОСОМЫ ЧЕЛОВЕКА, ОТСУТСТВУЮЩИЕ БЕЛКИ И НЕ 
ОХАРАКТЕРИЗОВАННЫЕ БЕЛКИ В ТКАНИ ПЕЧЕНИ И КЛЕТОЧНОЙ ЛИНИИ HEPG2
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Отсутствующие белки и функционально не охарактеризованные белки (в англоязычной литературе обозначенные как missing 
(MP) и functionally uncharacterized proteins (uPE1), соответственно) составляют менее 5% от общего числа белков, кодируемых генами 
18 хромосомы человека. В течение полугода, начиная с января 2020 года, в версии NextProt выросло количество записей в наборах 
данных MP+uPE1. Подобные изменения обусловлены преимущественно достижениями протеомики на основе антител. В данной работе 
количественная ПЦР, технологии секвенирования Illumina HiSeq и Oxford Nanopore Technologies были применены для сравнительного 
анализа транскриптомного  профиля образцов печени трех доноров мужского пола и клеточной линии HepG2. Анализ данных атласа 
экспрессии (Expression Atlas, EMBL-EBI) и полученных результатов по биологическим образцам с использованием ортогональных 
методов анализа транскриптома показал, что в клетках  печени и HepG2 уровень экспрессии генов, кодирующих функционально не 
охарактеризованные белки (uPE1), находится на таком же низком уровне, как и в случае генов MP (в количестве менее 1 копии на клетку). 
Исключение составили несколько генов: HSBP1L1, TMEM241, C18orf21 и KLHL14. Согласно существенным расхождениям в ранее 
полученных полуколичественных данных по экспрессии генов и данным в открытых базах данных, изначально предполагалось, что 
экспрессия генов uPE1 может быть выше, чем генов MP. Подобное расхождение побудило обратиться к транскриптому 18 хромосомы 
человека, являющейся целевой для России в проекте «Протеом человека». Полученные результаты о наиболее экспрессируемых генах 
и дальнейший корреляционный анализ показал существование зависимости от метода экстракции мРНК и аналитической платформы.
Анализ экспрессии целевых генов 18 хромосомы с применением количественной ПЦР (qPCR) и методов высокопроизводительного 
профилирования транскриптома (Illumina HiSeq и ONT MinION) для одинаковых наборов образцов нормальной ткани печени и клеточной 
линии HepG2 выявил более 250 (92%) белок-кодирующих генов, детектируемых хотя бы одним методом. Экспрессия более чем 50% 
белок-кодирующих генов была детектирована всеми тремя методами. Корреляционный анализ профилей экспрессии генов показал, что 
результаты «группируются» в зависимости от типа биологического материала и экспериментальных методов, в частности от способа 
подготовки библиотеки (выделения кДНК, мРНК). Зависимость от выбора способа биоинформатической обработки была отмечена в 
значительно меньшей степени. 

Ключевые слова: проект протеом человека; C-HPP; транскриптом; Oxford Nanopore Technologies; Illumina; РНК-
секвенирование; протеотипические пептиды; отсутствующие белки
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