Biomedical Chemistry: Research and Methods 2025, 8(4), e00265

HETEROLOGOUS EXPRESSION OF RECOMBINANT L-ASPARAGINASE GENES
(Dedicated to late Professor N.N. Sokolov, who made a significant contribution in the field of L-asparaginase)

M.V. Pokrovskaya *, S.S. Alexandrova, V.S. Pokrovsky, N.D. Dobryakova, A.N. Shishparenok,
Yu.V. Gladilina Ю.В., D.D. Zhdanov

Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121; *e-mail: Ivan1190@yandex.ru

Keywords:L-asparaginase, expression optimization, heterologous expression, rational and computer-aided design, recombinant genes

DOI:10.18097/BMCRM00265

The whole version of this paper is available in Russian.

L-asparaginase (EC 3.5.1.1.) is the enzyme with the highest level of global production and is used in the treatment of cancer and in the food industry. Different expression systems are used for the production of many target proteins, ranging from cell-free to hyperproductive plant, insect, bacterial and mammalian cells. This review attempts to bring together the available literature data on heterologous gene expression and technology for the production of recombinant L-asparaginases.

Figure 1. Schematic representation of the mechanism of action of L-asparaginases.

Figure 2. Strategy for heterologous expression of L-asparaginases. Description in text.

Figure 3. Classification of asparaginases (adapted from [31]). Description in text.

Figure 4. Lac operon of E. coli. Description in text.

Figure 5. Plasmid vector structure diagram. Description in text.

Figure 6. Translation initiation in bacteria. Description in text.

FUNDING

The work was carried out within the framework of the Program of Fundamental Scientific Research in the Russian Federation for the long-term period (2021-2030) (No. 122022800499-5).

REFERENCES

  1. Loch, J., Jaskolski, M. (2021) Structural and biophysical aspects of L-asparaginases: A growing family with amazing diversity. IUCrJ, 8 (4), 514-531. DOI
  2. Brumano, L., da Silva, F.V.S., Costa-Silva, T., Apolinário, A., Santos, J., Kleingesinds, E., Monteiro, G., Rangel-Yagui, C., Benyahia, B., Junior, A. (2019) Development of L-asparaginase biobetters: current research status and review of the desirable quality profiles. Frontiers in bioengineering and biotechnology, 10(6), 212. DOI
  3. Cachumba, J.J., Antunes, F.A., Peres, G.F., Brumano, L.P., Santos, J.C., Da Silva, S.S. (2016) Current applications and different approaches for microbial L-asparaginase production. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 47 (Suppl 1), 77-85. DOI
  4. Eisele, N., Linke, D., Bitzer, K., Na’amnieh, S., Nimtz, M., Berger, R. (2011) The first characterized asparaginase from a basidiomycete, Flammulina velutipes. Bioresource technology, 102(3), 3316-3321. DOI
  5. Jha, S. K., Pasrija, D., Sinha, R., Singh, H.R., Nigam, V., Vidyarthi, A. (2012) Microbial L-asparaginase: a review on current scenario and future prospects. International Journal of Pharmaceutical Sciences and Research, 3(9), 3076- 3090. DOI
  6. Dumina, M., Zhgun, A., Pokrovskaya, M., Aleksandrova, S., Zhdanov, D., Sokolov, N., El’darov, M. (2021) Highly active thermophilic L-asparaginase from Melioribacter roseus represents a novel large group of type II bacterial L-asparaginases from chlorobi-ignavibacteriae-bacteroidetes clade. International journal of molecular sciences, 22(24), 13632. DOI
  7. Mahajan, R.V., Kumar, V., Rajendran, V., Saran, S., Ghosh, P.C., Saxena, R.K. (2014) Purification and characterization of a novel and robust L-asparaginase having low-glutaminase activity from Bacillus licheniformis: in vitro evaluation of anti-cancerous properties. PLoS One, 9(6):e99037. DOI
  8. Sarquis, M.I., Oliveira, E.M., Santos, A.S., Costa, G.L. (2004) Production of L-asparaginase by filamentous fungi. Memorias do Instituto Oswaldo Cruz. 99(5), 489-492. DOI
  9. da Cunha, M.C, Dos Santos, Aguilar, J.G., de Melo, R.R., Nagamatsu, S.T., Ali, F., de Castro, R.J.S., Sato, H.H. (2019) Fungal L-asparaginase: Strategies for production and food applications. Food research international, 126, 108658. DOI
  10. Saleh, A.A., El-Aref, H.M., Ezzeldin, A.M., Ewida R.M., Bedak, O.A.Al. (2025) L-asparaginase from the novel Fusarium falciforme AUMC 16563: extraction, purification, characterization, and cytotoxic effects on PC-3, HePG- 2, HCT-116, and MCF-7 cell lines. BMC microbiology, 25(1), 145. DOI
  11. Casado, A., Caballero, J.L., Franco, A.R., Cárdenas, J., Grant, M.R., Muñoz-Blanco, J. (1995) Molecular cloning of the gene encoding the L-asparaginase gene of Arabidopsis thaliana. Plant physiology, 108(3), 1321- 1322. DOI
  12. Sharma, A., Kaushik., V., Goel, M. (2022) Insights into the distribution and functional properties of L-asparaginase in the Archaeal domain and characterization of Picrophilus torridus asparaginase belonging to the novel family Asp2like1. ACS Omega, 7(45), 40750-40765. DOI
  13. Broome, J.D. (1965) Antilymphoma activity of L-asparaginase in vivo: clearance rates of enzyme preparations from guinea pig serum and yeast in relation to their effect on tumor growth. Journal of the National Cancer Institute. 35(6), 967-974. DOI
  14. Lopes, A.M., Oliveira-Nascimento, L., Ribeiro, A., Tairum, C.A. Jr., Breyer, C.A., Oliveira, M.A., Monteiro, G., Souza-Motta, C.M., Magalhães, P.O., Avendaño, J.G., Cavaco-Paulo, A.M., Mazzola, P.G., Rangel-Yagui, C.O., Sette, L.D., Converti, A., Pessoa, A. (2017) Therapeutic L-asparaginase: upstream, downstream and beyond. Critical reviews in biotechnology, 37(1), 82-99. DOI
  15. Bosmann, H.B., Kessel, D. (1970) Inhibition of glycoprotein synthesis in L5178Y mouse leukaemic cells by L-asparaginase in vitro. Nature. 226(5248), 850-851. DOI
  16. Bejger, M., Imiolczyk, B., Clavel, D., Gilski, M., Pajak, A., Marsolais, F., Jaskolski, M. (2014) Na⁺/K⁺ exchange switches the catalytic apparatus of potassium-dependent plant L-asparaginase. Acta crystallographica. Section D, Biological crystallography, 70(Pt 7),1854-1872. DOI
  17. Vimal, A., Kumar, A. (2020) Antimicrobial potency evaluation of free and immobilized L-asparaginase using chitosan nanoparticles. Journal of Drug Delivery Science and Technology. 61(6), 102231. DOI
  18. Vimal, A., Kumar, A. (2022) L-asparaginase: Need for an expedition from an enzymatic molecule to antimicrobial drug. International journal of peptide research and therapeutics. 28(1), 9. DOI
  19. Zielezinski, A., Loch, J.I., Karlowski, W.M., Jaskolski, M. (2022) Massive annotation of bacterial L-asparaginases reveals their puzzling distribution and frequent gene transfer events. Scientific reports.12(1),15797. DOI
  20. Abd El-Baky, H.H., El-Baroty, G.S. (2020) Spirulina maxima L-asparaginase: immobilization, antiviral and antiproliferation activities. Recent patents on biotechnology, 14(2), 154-163. DOI
  21. Vimal, A., Kumar, A. (2018) L-Asparaginase: a feasible therapeutic molecule for multiple diseases. 3 Biotech, 8(6), 278. DOI
  22. Darvishi, F., Jahanafrooz, Z., Mokhtarzadeh, A. (2022) Microbial L-asparaginase as a promising enzyme for treatment of various cancers. Applied microbiology and biotechnology, 106(17), 5335-5347. DOI
  23. Ściuk, A., Wątor, K., Staroń, I., Worsztynowicz, P., Pokrywka, K., Sliwiak, J., Kilichowska, M., Pietruszewska, K., Mazurek, Z., Skalniak, A., Lewandowski, K., Jaskolski, M., Loch, J.I., Surmiak, M. (2024). Substrate affinity is not crucial for therapeutic L-asparaginases: antileukemic activity of novel bacterial enzymes. Molecules (Basel, Switzerland), 29(10), 2272. DOI
  24. Wang, N., Ji, W., Wang, L., Wu, W., Zhang, W., Wu, Q., Du, W., Bai, H., Peng, B., Ma, B., Li, L. (2022) Overview of the structure, side effects, and activity assays of L-asparaginase as a therapy drug of acute lymphoblastic leukemia. RSC medicinal chemistry, 13(2), 117-128. DOI
  25. Patel, P., Panseriya, H., Vala, A.K., Dave, B.P., Gosai, H. (2022). Exploring current scenario and developments in the field of microbial L-asparaginase production and applications: A review. Process Biochemistry, 121, 529-541. DOI
  26. Xu, F., Oruna-Concha, M.J., Elmore, J.S. (2016) The use of asparaginase to reduce acrylamide levels in cooked food. Food chemistry. 210, 163-171. DOI
  27. Santos, J.H.P.M., Costa, I.M., Molino, J.V.D., Leite, M.S.M., Pimenta, M.V., Coutinho, J.A.P., Pessoa, A.Jr., Ventura, S.P.M., Lopes, A.M., Monteiro, G. (2017) Heterologous expression and purification of active L-asparaginase I of Saccharomyces cerevisiae in E. coli host. Biotechnology progress, 33(2), 416- 424. DOI
  28. Tekoah, Y., Shulman, A., Kizhner, T., Ruderfer, I., Fux, L., Nataf, Y., Bartfeld, D., Ariel, T., Gingis-Velitski, S., Hanania, U., Shaaltiel, Y. (2015) Largescale production of pharmaceutical proteins in plant cell culture-the Protalix experience. Plant biotechnology journal. 13(8), 1199-1208. DOI
  29. Zhu, J. (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnology advances, 30(5), 1158-1170. DOI
  30. Zhang, X. Wang, Z., Wang, Y., Li, X., Zhu, M., Zhang, H., Xu, M., Yang, T., Rao, Z. (2021) Heterologous expression and rational design of L-asparaginase from Rhizomucor miehei to improve thermostability. Biology, 10(12), 1346. DOI
  31. Lefin, N., Miranda, J., Beltrán, J.F., Belén, L.H., Effer, B., Pessoa, A. Jr., Farias, J.G., Zamorano, M. (2023) Current state of molecular and metabolic strategies for the improvement of L-asparaginase expression in heterologous systems. Frontiers in pharmacology, 14, 1208277. DOI
  32. Yang, X., Rao, Y., Zhang, M., Wang, J., Liu, W., Cai, D., Chen, S. (2023) Efficient production of L-asparaginase in Bacillus licheniformis by optimizing expression elements and host. Chinese journal of biotechnology, 39(3), 1096- 1106. DOI
  33. Li, X., Xu, S., Zhang, X., Xu, M., Yang, T., Wang, L., Zhang, H., Fang, H., Osire, T., Yang, S., Rao, Z. ( 2019) Design of a high-efficiency synthetic system for L-asparaginase production in Bacillus subtilis. Engineering in life sciences, 19(3), 229-239. DOI
  34. Costa-Silva, T.A., Camacho-Córdova, D.I., Agamez-Montalvo, G.S., Parizotto, L.A., Sánchez-Moguel, I., Pessoa-Jr, A. (2019) Optimization of culture conditions and bench-scale production of anticancer enzyme L-asparaginase by submerged fermentation from Aspergillus terreus CCT 7693. Preparative biochemistry & biotechnology, 49(1), 95-104. DOI
  35. Sharma, D., Mishra, A. (2023) Synergistic effects of ternary mixture formulation and process parameters optimization in a sequential approach for enhanced L-asparaginase production using agro-industrial wastes. Environmental science and pollution research international, 31(12), 1-16. DOI
  36. Poluri, K.M., Gulati, K. (2017) Rational designing of novel proteins through computational approaches. In: Protein engineering techniques.Springer Briefs in Applied Sciences and Technology. Springer Singapore. pp. 61-83. DOI
  37. Praveen, P. (2019). Modeling and validation of L-asparaginase enzyme, an anticancer agent using the tools of computational biology. International Journal of Research in Medical Sciences, 8(1), 211-214, DOI
  38. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., Sternberg, M.J. (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nature protocols, 10(6), 845-858. DOI
  39. Gileadi, O. (2017) Recombinant protein expression in E. coli : A historical perspective. Methods in molecular biology, 1586, 3-10. DOI
  40. Saberianfar, R., Menassa, R. (2018) Strategies to increase expression and accumulation of recombinant proteins. In: Molecular Pharming: Applications, Challenges, and Emerging Areas. ( A.R. Kermode and L. Jiang eds.) New York. pp. 119-135. DOI
  41. Shishparenok, A.N., Gladilina, Y.A., Zhdanov, D.D. (2023) Engineering and expression strategies for optimization of L-asparaginase development and production. International journal of molecular sciences, 24(20),15220. DOI
  42. Miranda, J., Lefin, N., Beltran, J., Belén, L.H., Tsipa, A., Farias, J.G., Zamorano, M. (2023) Enzyme engineering strategies for the bioenhancement of L-asparaginase used as a biopharmaceutical. BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy, 37(6), 793-811. DOI
  43. Borek, D., Jaskólski, M. (2001) Sequence analysis of enzymes with asparaginase activity. Acta biochimica Polonica, 48(4), 893-902. DOI
  44. Michalska, K., Jaskolski, M. (2006). Structural aspects of L-asparaginases, their friends and relations. Acta biochimica Polonica, 53 (4), 627-640. DOI
  45. Castro, D., Marques, A., Almeida, M.R., de Paiva, G.B., Bento, H.B.S., Pedrolli, D.B., Freire, M.G., Tavares, A.P.M., Santos-Ebinuma, V.C. (2021) L-asparaginase production review: bioprocess design and biochemical characteristics. Applied microbiology and biotechnology, 105(11), 4515-4534. DOI
  46. Bonthron, D.T., Jaskólski, M. (1997) Why a “benign” mutation kills enzyme activity. Structure-based analysis of the A176V mutant of Saccharomyces cerevisiae L-asparaginase I. Acta biochimica Polonica, 44(3), 491-504. DOI
  47. Lubkowski, J., Wlodawer, A. (2021) Structural and biochemical properties of L-asparaginase. The FEBS journal, 288(14), 4183-4209. DOI
  48. da Silva, L.S., Doonan, L.B., Pessoa, A. Jr., de Oliveira, M.A., Long, P.F. (2022) Structural and functional diversity of asparaginases: Overview and recommendations for a revised nomenclature. Biotechnology and applied biochemistry, 69(2), 503-513. DOI
  49. Yun, M.K., Nourse, A., White, S.W., Rock, C.O., Heath, R.J. (2007) Crystal structure and allosteric regulation of the cytoplasmic E. coli L-asparaginase I. Journal of molecular biology, 369(3), 794-811. DOI
  50. Jennings, M.P., Beacham, I.R. (1993) Co-dependent positive regulation of the ansB promoter of E. coli by CRP and the FNR protein: a molecular analysis. Molecular microbiology, 9(1), 155-64. DOI
  51. Dunlop, P.C., Meyer, G.M., Ban, D., Roon, R.J. (1978) Characterization of two forms of asparaginase in Saccharomyces cerevisiae. The Journal of biological chemistry, 253(4), 1297-1304. DOI
  52. Dumina, M., Zhgun, A. (2023) Thermo-L-asparaginases: from the role in the viability of thermophiles and hyperthermophiles at high temperatures to a molecular understanding of their thermoactivity and thermostability. International journal of molecular sciences, 24(3), 2674. DOI
  53. Pokrovskaya, M.V., Pokrovsky, V.S., Aleksandrova, S.S., Sokolov, N.N., Zhdanov, D.D. (2022) Molecular analysis of L-asparaginases for clarification of the mechanism of action and optimization of pharmacological functions. Pharmaceutics, 14(3), 599. DOI
  54. Kotzia, G.A., Lappa, K., Labrou, N.E. ( 2007) Tailoring structure-function properties of L-asparaginase: engineering resistance to trypsin cleavage. The Biochemical journal, 404(2), 337-343. DOI
  55. Gesto, D.S., Cerqueira, N.M., Fernandes, P.A., Ramos, M.J. (2013) Unraveling the Enigmatic Mechanism of L-asparaginase II with Q M/QM Calculations. Journal of the American Chemical Society, 135(19), 7146-7158. DOI
  56. Aghaiypour, K., Wlodawer, A., Lubkowski, J. (2001) Structural basis for the activity and substrate specificity of Erwinia chrysanthemi L-asparaginase. Biochemistry, 40(19), 5655-5664. DOI
  57. Upadhyay, A.K., Singh, A., Mukherjee, K.J., Panda, A.K. (2014) Refolding and purification of recombinant L-asparaginase from inclusion bodies of E. coli into active tetrameric protein. Frontiers in Microbiology, 5, 486. DOI
  58. Maurizi, M.R. (1992) Proteases and protein degradation in Escherichia coli. Experientia, 48(2), 178-201. DOI
  59. Wülfing, C., Plückthun, A. (1994) Protein folding in the periplasm of Escherichia coli. Molecular microbiology, 12(5), 685-692. DOI
  60. Papageorgiou, A.C., Posypanova, G.A., Andersson, C.S., Sokolov, N.N., Krasotkina, J. (2008) Structural and functional insights into Erwinia carotovora L-asparaginase. The FEBS journal, 275(17), 4306-4316. DOI
  61. Swain, A.L., Jaskólski, M., Housset, D., Rao, J.K., Wlodawer, A. (1993) Crystal structure of Escherichia coli L-asparaginase, an enzyme used in cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 90(4), 1474-1478. DOI
  62. Pokrovskaya, M.V., Pokrovskiy, V.S., Aleksandrova, S.S, Anisimova, N.Iu., Andrianov, R.M., Treschalina, E.M., Ponomarev, G.V., Sokolov, N.N. (2013). Recombinant intracellular Rhodospirillum rubrum L-asparaginase with low L-glutaminase activity and antiproliferative effect. Biomeditsinskaia Khimiia, 59(2), 192-208. DOI
  63. Palm, G.J., Lubkowski, J., Derst, C., Schleper, S., Röhm, K.H., Wlodawer, A. (1996) A covalently bound catalytic intermediate in Escherichia coli asparaginase: crystal structure of a Thr-89-Val mutant. FEBS letters, 390(2), 211-216. DOI
  64. El-Ghonemy, D. (2014) Microbial amidases and their industrial applications: A review. Journal of Medical Microbiology and Diagnosis, 4, 1-6. DOI
  65. Borek, D., Kozak, M., Pei, J., Jaskolski, M. (2014) Crystal structure of active site mutant of antileukemic L-asparaginase reveals conserved zinc-binding site. The FEBS journal, 81(18), 4097-4111. DOI
  66. Nguyen, H.A., Su, Y., Lavie, A. (2016) Design and characterization of Erwinia chrysanthemi L-asparaginase variants with diminished L-glutaminase activity. The Journal of biological chemistry, 291(34), 17664-17676. DOI
  67. Nguyen, H.A, Su, Y., Lavie, A. (2016) Structural insight into substrate selectivity of Erwinia chrysanthemi L-asparaginase. Biochemistry, 55(8), 1246- 1253. DOI
  68. Nguyen, H.A., Durden, D.L., Lavie, A. (2017) The differential ability of asparagine and glutamine in promoting the closed/active enzyme conformation rationalizes the Wolinella succinogenes L-asparaginase substrate specificity. Scientific reports, 7, 41643. DOI
  69. Lubkowski, J., Wlodawer, A. (2019) Geometric considerations support the double-displacement catalytic mechanism of L-asparaginase. Protein science: a publication of the Protein Society, 28(10), 1850-1864. DOI
  70. Lubkowski, J., Vanegas, J.M., Chan, W.K., Lorenzi, P., Weinstein, J., Sukharev, S., Fushman, D., Rempe, S., Anishkin, A., Wlodawer, A. (2020) Mechanism of catalysis by L-asparaginase. Biochemistry, 59(20), 1927-1945. DOI
  71. Min Yao, Yoshiaki Yasutake, Hazuki Morita, Isao Tanaka. Structure of the type I L-asparaginase from the hyperthermophilic archaeon Pyrococcus horikoshii at 2.16 A resolution Acta Crystallographica Section D: Structural Biology (2005) 61(Pt 3):294-301. DOI
  72. Tomar, R., Garg, D.K., Mishra, R., Thakur, A.K., Kundu, B. (2013) N-terminal domain of Pyrococcus furiosus L-asparaginase functions as a nonspecific, stable, molecular chaperone. The FEBS journal, 280(11), 2688-2699. DOI
  73. Pritsa, A.A., Kyriakidis, D.A. (2001) L-asparaginase of Thermus thermophilus: Purification, properties and identification of essential amino acids for its catalytic activity. Molecular and cellular biochemistry, 216 (1-2), 93-101. DOI
  74. Derst, C., Henseling, J., Röhm, K.H. (1992) Probing the role of threonine and serine residues of E. coli asparaginase II by site-specific mutagenesis. Protein engineering, 5(8), 785-789. DOI
  75. Derst, C., Henseling, J., Röhm, K.H. (2000) Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein science: a publication of the Protein Society, 9(10), 2009-2017. DOI
  76. Derst, C., Wehner, A., Specht, V., Röhm, K.H. (1994) States and functions of tyrosine residues in Escherichia coli asparaginase II. European journal of biochemistry, 224(2), 533-540. DOI
  77. Bansal, S., Srivastava, A., Mukherjee, G., Pandey, R., Verma, A.,K. Mishra, P., Kundu, B. (2012) Hyperthermophilic asparaginase mutants with enhanced substrate affinity and antineoplastic activity: structural insights on their mechanism of action. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 26(3), 1161-1171. DOI
  78. Offman, M.N., Krol, M., Patel, N., Krishnan, S., Liu, J., Saha, V., Bates, P.A. (2011) Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity. Blood. 117(5), 1614-1621. DOI
  79. Costa, I.M., Schultz, L., de Araujo Bianchi, P.B., Leite, M.S., Farsky, S.H., de Oliveira, M.A., Pessoa, A., Monteiro, G. (2016) Recombinant L-asparaginase ׀ from Saccharomyces cerevisiae: an allosteric enzyme with antineoplastic activity. Scientific reports, 6(1), 36239. DOI
  80. Karamitros, C.S., Konrad, M. (2014) Bacterial co-expression of the α and β protomers of human L-asparaginase-3: Achieving essential N-terminal exposure of a catalytically critical threonine located in the β-subunit. Protein expression and purification, 93, 1-10. DOI
  81. Karamitros, C.S., Konrad, M. (2014) Human 60-kDa lysophospholipase contains an N-terminal L-asparaginase domain that is allosterically regulated by L-asparagine. The Journal of biological chemistry, 289(19), 12962-12975. DOI
  82. Maqsood, B., Basit. A., Khurshid, M., Bashir, Q. (2020) Characterization of a thermostable, allosteric L-asparaginase from Anoxybacillus flavithermus. International journal of biological macromolecules, 152, 584-592. DOI
  83. Mihooliya, K.N., Nitika, N., Bhambure, R., Rathore, A. (2022) Post-refolding stability considerations for optimization of in-vitro refolding: L-asparaginase as a case study. Biotechnology journal, 18(4), 2200505. DOI
  84. Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., Serrano, L. (2005) The FoldX web server: an online force field. Nucleic acids research, 33(Web Server issue):W382-8. DOI
  85. Dastmalchi, M., Alizadeh, M., Jamshidi-Kandjan, O., Rezazadeh, H., Hamzeh-Mivehroud, M., Farajollahi, M.M., Dastmalchi, S. (2023) Expression and biological evaluation of an engineered recombinant L-asparaginase designed by In Silico method based on sequence of the enzyme from Escherichia coli. Advanced pharmaceutical bulletin, 13(4), 827-836. DOI
  86. Goyal, G., Bhatt, V.R. (2015) L-asparaginase and venous thromboembolism in acute lymphocytic leukemia. Future oncology (London, England), 11(17), 2459-2470. DOI
  87. Schmiegelow, K., Attarbaschi, A., Barzilai, S., Escherich, G., Frandsen, T., Halsey, C.,Hough, R., Jeha, S., Kato, M., Liang, D.C., Mikkelsen, T.S., Möricke, A., Niinimäki, R., Piette, C., Putti, M.C., Raetz, E., Silverman, L.B., Skinner, R., Tuckuviene, R., van der Sluis, I., Zapotocka, E. (2016) Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: A delphi consensus. The Lancet. Oncology, 17 (6), e231–e239. DOI
  88. Zhang, Z.X., Nong, F.T., Wang, Y.Z, Yan, C.-X., Gu, Y., Song, P., Sun, X.M. (2022) Strategies for efficient production of recombinant proteins in Escherichia coli: alleviating the host burden and enhancing protein activity. Microbial Cell Factories, 21(1), 191. DOI
  89. Zhang, S., Sun, Y., Zhang, L., Zhang, F., Gao, W. (2023) Thermoresponsive polypeptide fused L-asparaginase with mitigated immunogenicity and enhanced efficacy in treating hematologic malignancies. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 10(23):e2300469. DOI
  90. Zhang, W., Dai, Q., Huang, Z., Xu, W. (2023) Identiication and thermostability modification of the mesophilic L-asparaginase from Limosilactobacillus secaliphilus. Applied biochemistry and biotechnology, 196(6), 1-15. DOI
  91. Kishore, V., Nishita, K.P., Manonmani, H.K. (2015) Cloning, expression and characterization of L-asparaginase from Pseudomonas fluorescens for large scale production in E. coli BL21. 3 Biotech. 5(6), 975-981. DOI
  92. Wang, Y., Xu, W., Wu, H., Zhang, W., Guang, C., Mu, W. (2021) Microbial production, molecular modification, and practical application of L-Asparaginase: A review. International journal of biological macromolecules, 186, 975-983. DOI
  93. Pokrovskaya, M.V., Aleksandrova, S.S., Pokrovsky, V.S., Omeljanjuk, N.M., Borisova A.A., Anisimova, N.Y., Sokolov, N.N. (2012) Cloning, expression and characterization of the recombinant Yersinia pseudotuberculosis L-asparaginase. Protein expression and purification, 82(1), 150-154. DOI
  94. Maggi, M., Mittelman, S.D., Parmentier, J.H., Colombo, G., Meli, M., Whitmire, J.M., Merrell, D.S., Whitelegge, J., Scotti, C. (2017) A proteaseresistant Escherichia coli asparaginase with outstanding stability and enhanced anti-leukaemic activity in vitro. Scientific reports, 7(1), 14479. DOI
  95. Mahboobi, M., Salmanian, A.H., Sedighian, H., Bambai, B. (2023) Molecular modeling and optimization of type II E.coli L-asparginase activity by in silico design and in vitro site-directed mutagenesis. The protein journal, 42(6), 664-674. DOI
  96. Mahboobi, M., Sedighian, H., Hedayati, M., Bambai, B., Saeed, E., Soofian, A.J. (2017) Applying bioinformatic tools for modeling and modifying type II E.coli L-asparginase to present a better therapeutic agent/drug for acute lymphoblastic leukemia. International Journal of Cancer Management, 10(3), e5785. DOI
  97. Ln, R., Doble, M., Rekha, V.P., Pulicherla, K.K. (2011) In silico engineering of L-asparaginase to have reduced glutaminase side activity for effective treatment of acute lymphoblastic leukemia. Journal of pediatric hematology/ oncology, 33(8), 617-621. DOI
  98. Ardalan, N., Akhavan, S.A., Khavari-Nejad, R. (2021) Development of Escherichia coli asparaginase II for the treatment of acute lymphocytic leukemia: in silico reduction of asparaginase II side effects by a novel mutant (V27F). Asian Pacific journal of cancer prevention: APJCP, 22(4), 1137-1147. DOI
  99. Song, Z., Zhang, Q., Wu, W., Pu, Z., Yu, H. (2023) Rational design of enzyme activity and enantioselectivity. Frontiers in bioengineering and biotechnology, 11, 1129149. DOI
  100. Korendovych, I.V. (2018) Rational and semirational protein design. Methods in molecular biology, 1685, 15-23. DOI
  101. Sellés V.L., Isalan, M., Heap, J.T., Ledesma-Amaro, R. (2023) A primer to directed evolution: current methodologies and future directions. RSC chemical biology, 4(4), 271-291. DOI
  102. Zeymer, C., Hilvert, D. (2018) Directed evolution of protein catalysts. Annual review of biochemistry, 87, 131-157. DOI
  103. Karamitros, C.S., Konrad, M. (2016) Fluorescence-activated cell sorting of human L-asparaginase mutant libraries for detecting enzyme variants with enhanced activity. ACS chemical biology, 11(9), 2596-2607. DOI
  104. Beckett, A., Gervais, D. (2019) What makes a good new therapeutic L-asparaginase? World journal of microbiology & biotechnology, 35(10), 152. DOI
  105. Lopes, W., Santos, B.A.F.D., Sampaio, A.L.F., Gregório Alves Fontão, A.P., Nascimento, H.J., Jurgilas, P.B., Torres, F.A.G., Bon, E.P.D.S., Almeida, R.V., Ferrara, M.A. (2019) Expression, purification, and characterization of asparaginase II from Saccharomyces cerevisiae in Escherichia coli. Protein expression and purification, 159, 21-26. DOI
  106. Ali, M., Ishqi, H.M., Husain, Q. (2020) Enzyme engineering: reshaping the biocatalytic functions. Biotechnology and bioengineering, 117(6), 1877-1894. DOI
  107. Pongsupasa, V., Anuwan, P., Maenpuen, S., Wongnate, T. (2021) Rationaldesign engineering to improve enzyme thermostability. Methods in molecular biology, 2397, 159-178. DOI
  108. Xie, W.J., Asadi, M., Warshel, A. (2022) Enhancing computational enzyme design by a maximum entropy strategy. Proceedings of the National Academy of Sciences of the United States of America, 119(7), e2122355119. DOI
  109. Vasina, M., Velecký, J., Planas-Iglesias, J., Marques, S.M., Skarupova, J., Damborsky, J., Bednar, D., Mazurenko, S., Prokop, Z. (2022) Tools for computational design and high-throughput screening of therapeutic enzymes. Advanced drug delivery reviews, 183(1), 114143. DOI
  110. Chi, H., Wang, Y., Xia, B., Zhou, Y., Lu, Z., Lu, F., Zhu, P. (2022) Enhanced thermostability and molecular insights for L-asparaginase from Bacillus licheniformis via structure- and computation-based rational design. Journal of agricultural and food chemistry, 70(45), 14499-14509. DOI
  111. Marcos, E., Silva, D.A. (2018) Essentials of de novo protein design: Methods and applications. Wiley interdisciplinary reviews: Computational Molecular Science, 8(6), e1374(6110). DOI
  112. Ferreira, P., Fernandes, P.A., Ramos, M.J. (2022) Modern computational methods for rational enzyme engineering. Chem Catalysis. 2(10), 2481-2498. DOI
  113. Nguyen, T.T.H., Nguyen, C. T., Nguyen, T. S.L., Du, T. T. (2016). Optimization, purification and characterization of recombinant L-asparaginase II in Escherichia coli. African Journal of Biotechnology, 15(31), 1681-1691. DOI
  114. Nguyen, H.A., Su, Y., Zhang, J.Y., Antanasijevic, A., Caffrey, A.M., Schalk, A., Liu, L., Rondelli, D., Oh, A., Mahmud, D.L., Bosland, M.C., Kajdacsy-Balla, A., Peirs, S., Lammens, T., Mondelaers, V., De Moerloose, B., Goossens, S., Schlicht, M.J., Kabirov, K.K., Lyubimov, A.V, Merrill, B.J., Saunthararajah, Y., Van Vlierberghe, P.V., Lavie, A. (2018) A novel L-asparaginase with low L-glutaminase coactivity is highly efficacious against both T- and B-cell acute lymphoblastic leukemias in vivo. Cancer research, 78(6), 1549-1560. DOI
  115. Costa, I.M., Custódio, D., Lima, G.M., Pessoa, A., dos Santos, C.O., Oliveira, M.A., Monteiro, G. (2022). Engineered asparaginase from Erwinia chrysanthemi enhances asparagine hydrolase activity and diminishes enzyme immunoreactivity- a new promise to treat acute lymphoblastic leukemia. Journal of Chemical Technology and Biotechnology, 97(1), 228-239. DOI
  116. Linshu, J., Chi, H., Xia, B., Lu, Z., Bie, X., Zhao, H., Lu, F., Chen, M. (2022) Thermostability Improvement of L-asparaginase from Acinetobacter soli via Consensus-Designed Cysteine Residue Substitution. Molecules. 27(19), 6670. DOI
  117. Sudhir, A.P., Agarwaal, V.V., Dave, B.R., Patel, D.H., Subramanian, R.B. (2016) Enhanced catalysis of L-asparaginase from Bacillusl icheniformis by a rational redesign. Enzyme and microbial technology, 86, 1-6. DOI
  118. Zhou, Y., Jiao, L., Shen, J., Chi, H., Lu, Z., Liu, H., Lu, F., Zhu, P. (2022) Enhancing the catalytic activity of type II L-asparaginase from Bacillus licheniformis through semi-rational design. International journal of molecular sciences, 23(17), 9663. DOI
  119. Baral, A., Gorkhali, R., Basnet, A., Koirala, S., Bhattarai, H.K. (2021) Selection of the optimal L-asparaginase II against acute lymphoblastic leukemia: an in silico approach. JMIRx Med. 2(3), e29844. DOI
  120. Long, S., Zhang, X., Rao, Z., Chen, K., Xu, M., Yang, T., Yang, S. (2016) Amino acid residues adjacent to the catalytic cavity of tetramer L-asparaginase II contribute significantly to its catalytic efficiency and thermostability. Enzyme and microbial technology, 82, 15-22. DOI
  121. Kotzia, G.A., Labrou, N.E. (2009) Engineering thermal stability of L-asparaginase by in vitro directed evolution. The FEBS journal, 276(6), 1750- 1761. DOI
  122. Pokrovskaya, M.V., Aleksandrova, S.S., Pokrovsky, V.S., Veselovsky, A.V., Grishin D.V., Abakumova, O.Y., Podobed, O.V., Mishin, A.A., Zhdanov, D.D., Sokolov, N.N. (2015) Identification of functional regions in the Rhodospirillum rubrum L-asparaginase by site-directed mutagenesis. Molecular Biotechnology, 57(3), 251-264. DOI
  123. Lu, X., Chen, J., Jiao, L., Zhong, L., Lu, Z., Zhang, C., Lu, F. (2019) Improvement of the activity of L-asparaginase I improvement of the catalytic activity of L-asparaginase I from Bacillus megaterium H-1 by in vitro directed evolution. Journal of bioscience and bioengineering, 128(6), 683-689. DOI
  124. Aghaeepoor, M., Akbarzadeh, A., Mirzaie, S., Hadian, A., Jamshidi Aval, S., Dehnavi, E. (2018) Selective reduction in glutaminase activity of L-Asparaginase by asparagine 248 to serine mutation: A combined computational and experimental effort in blood cancer treatment. International journal of biological macromolecules, 120(Pt B), 2448-2457. DOI
  125. Faber, M.S, Whitehead, T.A. (2019) Data-driven engineering of protein therapeutics. Current opinion in biotechnology, 60, 104-110. DOI
  126. Sannikova, E.P., Bulushova, N.V., Cheperegin, S.E., Gubaydullin, I.I., Chestukhina, G.G., Ryabichenko, V.V., Zalunin, I.A., Kotlova, E.K., Konstantinova, G.E., Kubasova, T.S., Shtil, A.A, Pokrovsky, V.S., Yarotsky, S.V., Efremov, B.D., Kozlov, D.G. (2016) The modified heparin-binding L-asparaginase of Wolinella succinogenes. Molecular biotechnology, 58(8-9), 528-539. DOI
  127. Belén, L.H., Lissabet, J.B., de Oliveira Rangel-Yagui, C., Effer, B., Monteiro, G., Pessoa, A., Farías Avendaño, J.G. (2019) A structural in silico analysis of the immunogenicity of L-asparaginase from Escherichia coli and Erwinia carotovora. Biologicals: journal of the International Association of Biological Standardization 59, 47-55. DOI
  128. Cantor, J.R., Yoo, T.H., Dixit, A., Iverson, B.L., Forsthuber, T.G., Georgiou, G. (2011) Therapeutic enzyme deimmunization by combinatorial T-cell epitope removal using neutral drift. Proceedings of the National Academy of Sciences of the United States of America, 108(4), 1272-1277. DOI
  129. Cantor, J.R., Panayiotou, V., Agnello, G., Georgiou, G., Stone, E.M. (2012) Engineering reduced-immunogenicity enzymes for amino acid depletion therapy in cancer. Methods in enzymology, 502, 291-319. DOI
  130. Alexandrova, S.S., Gladilina, Y.A., Pokrovskaya, M.V., Sokolov, N.N., Zhdanov D.D. (2022) Mechanisms of development of side effects and drug resistance to L-asparaginase and ways to overcome them. Biomeditsinskaia khimiia, 68(2), 104-116. DOI
  131. Pokrovskaya, M.V., Zhdanov, D.D., Eldarov, M.A., Aleksandrova, S.S., Veselovskiy, A.V., Pokrovskiy, V.S., Grishin, D.V., Gladilina, J.A., Sokolov, N.N. (2017) Suppression of telomerase activity leukemic cells by mutant forms of Rhodospirillum rubrum L-asparaginase. Biomeditsinskaya Khimiya, 63(1), 62-74. DOI
  132. Gupta, S.K., Shukla, P. (2016) Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Critical reviews in biotechnology, 36(6), 1089-1098. DOI
  133. Kant Bhatia, S., Vivek, N., Kumar, V., Chandel, N., Thakur, M., Kumar, D., Yang, Y., Pugazendhi, A., Kumar, G. (2021) Molecular biology interventions for activity improvement and production of industrial enzymes. Bioresource technology, 324, 124596. DOI
  134. Rieder, L., Teuschler, N., Ebner, K., Glieder, A. (2019). Eukaryotic expression systems for industrial enzymes. In Industrial Enzyme Applications (A. Vogel and O. May eds.)Wiley-VCH, pp. 47-69. DOI
  135. Terpe, K. (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Applied microbiology and biotechnology. 72(2), 211- 222. DOI
  136. Datar, R.V., Cartwright, T., Rosen, C.G. (1993) Process economics of animal cell and bacterial fermentations: a case study analysis of tissue plasminogen activator. Biotechnology (N Y), 11(3), 349-357. DOI
  137. John, N. Abelson, David V. Goeddel, Melvin I. Simon (1990) Gene expression technology. In methods in enzymology, ( David V. Goeddel Ed.) Academic Press, San Diego, 185, pp. 3-681
  138. Dell, A., Galadari, A., Sastre, F., Hitchen, P. (2010) Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. International journal of microbiology, 2010, 148178. DOI
  139. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology, 3(2), 97-130. DOI
  140. Withka, J.M., Wyss, D.F., Wagner, G., Arulanandam, A.R., Reinherz, E.L., Recny, M.A. (1993) Structure of the glycosylated adhesion domain of human T lymphocyte glycoprotein CD2. Structure (London, England), 1(1), 69-81. DOI
  141. Elliott, S., Lorenzini, T., Asher, S., Aoki, K., Brankow, D., Buck, L., Busse, L., Chang, D., Fuller, J., Grant, J., Hernday, N., Hokum, M., Hu, S., Knudten, A., Levin, N., Komorowski, R., Martin, F., Navarro, R., Osslund, T., Rogers, G., Rogers, N., Trail, G., Egrie, J. (2003) Enhancement of therapeutic protein in vivo activities through glycoengineering. Nature biotechnology, 21(4), 414-421. DOI
  142. Flintegaard, T.V., Thygesen, P., Rahbek-Nielsen, H., Levery, S.B., Kristensen, C., Clausen, H., Bolt, G. (2010) N-glycosylation increases the circulatory half-life of human growth hormone. Endocrinology, 151(11), 5326- 5336. DOI
  143. Solá, R.J., Griebenow, K. (2009) Effects of glycosylation on the stability of protein pharmaceuticals. Journal of pharmaceutical sciences, 98(4), 1223-1245. DOI
  144. Sadoulet, M.O., Franceschi, C., Aubert, M., Silvy, F., Bernard, J.P., Lombardo, D., Mas, E. (2007) Glycoengineering of alpha Gal xenoantigen on recombinant peptide bearing the J28 pancreatic oncofetal glycotope. Glycobiology, 17(6), 620-630. DOI
  145. Wacker, M., Wang, L., Kowarik, M., Dowd, M., Lipowsky, G., Faridmoayer, A., Shields, K., Park, S., Alaimo, C., Kelley, K.A., Braun, M., Quebatte, J., Gambillara, V., Carranza, P., Steffen, M., Lee, J.C. (2014) Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli. The Journal of infectious diseases, 209(10), 1551-1561. DOI
  146. Sinclair, A.M., Elliott, S. (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. Journal of pharmaceutical sciences, 94(8), 1626-1635. DOI
  147. Feige, M.J., Braakman, I., Hendershot, L.M. (2018) Disulfide bonds in protein folding and stability. In oxidative folding of proteins: basic principles, cellular regulation and engineering, (M. J. Feige ed.) The Royal Society of Chemistry, 1-33. DOI
  148. Thornton, J.M. (1981) Disulphide bridges in globular proteins. Journal of molecular biology, 151(2), 261-287. DOI
  149. Ferrara, M.A., Severino, N.M.B., Mansure, J.J., Martins, A.S., Oliveira, E., Siani, A.C., Jr, N.P., Torres, F.A., Bon,E.P.S. (2006) Asparaginase production by a recombinant Pichia pastoris strain harbouring Saccharomyces cerevisiae ASP3 gene. Enzyme and Microbial Technology, 39 (7), 1457-1463. DOI
  150. Vittaladevaram, V. (2021) A Short communication on Pichia pastorisi vs. E. coli: Efficient expression system. Annals of Proteomics and Bioinformatics, 5(1), 49-50. DOI
  151. Jacobs, P., Geysens, S., Vervecken, W., Contreras, R.H., Callewaert, N. (2009) Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nature protocols, 4(1), 58-70. DOI
  152. Pan, Y., Yang, J., Wu, J., Yang, L., Fang, H. (2022) Current advances of Pichia pastoris as cell factories for production of recombinant proteins. Frontiers in Microbiology, 13(1), 1059777. DOI
  153. Juturu, V., Wu, J.C (2018) Heterologous protein expression in Pichia pastoris: latest research progress and applications. Chembiochem : a European journal of chemical biology, 19(1), 7-21. DOI
  154. Ahmad, M., Hirz, M., Pichler, H., Schwab, H. (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied microbiology and biotechnology, 98(12), 5301-5317. DOI
  155. Rodrigues, D., Pillaca-Pullo, O., Torres-Obreque, K., Flores-Santos, J., Sánchez-Moguel, I., Pimenta, M.V., Basi, T., Converti, A., Lopes, A.M., Monteiro, G., Fonseca, L.P., Pessoa, A.J. (2019) Fed-batch production of Saccharomyces cerevisiae L-asparaginase II by recombinant Pichia pastoris MUTs strain. Frontiers in bioengineering and biotechnology, 7, 16. DOI
  156. Karbalaei, M., Rezaee, S.A., Farsiani, H. (2020) Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. Journal of cellular physiology, 235(9), 5867-5881. DOI
  157. Parizotto, L., Kleingesinds, E., da Rosa, L.M.P., Roldán E.B., Lima, G.M., Herkenhoff, M.E., Li, Z., Rinas, U., Monteiro, G., Pessoa, A., Tonso, A. (2021) Increased glycosylated L-asparaginase production through selection of Pichia pastoris platforma and oxygen-methanol control in fed-batches. Biochemical Engineering Journal, 173, 108083. DOI
  158. Lima, G.M., Roldán, B.E., Biasoto, H.P., Feijoli, V., Pessoa, A., Palmisano, G., Monteiro, G. (2020) Glycosylation of L-asparaginase from E. coli through yeast expression and site-directed mutagenesis. Biochemical Engineering Journal. 156, 107516. DOI
  159. Nguyen, T.C., Nguyen, T.T.H., Tuyen, Do.T., Thi, Quyen D.T.(2014). Expression, purification and evaluation of recombinant L-asparaginase in menthylotrophic Pichia pastoris. Journal of Vietnamese Environment, 6(3), 288-292. DOI
  160. Effer, B., Kleingesinds, E.K., Lima, G.M., Costa, I.M., Sánchez-Moguel, I., Pessoa, A., Santiago, V.F., Palmisano, G., Farías, J.G., Monteiro, G. (2020) Glycosylation of Erwinase results in active protein less recognized by antibodies. Biochemical Engineering Journal, 163(301), 107750. DOI
  161. Sajitha, S., Vidya, J., Varsha, Karunakaran , Binod, P., Pandey, A. (2015) Cloning and expression of L-asparaginase from E.coli in eukaryotic expression system. Biochemical Engineering Journal, 102, 14-17. DOI
  162. Dantas, R.C, Caetano, L.F., Torres, A.L.S., Alves, M.S., Silva, E.T.M.F., Teixeira, L.P.R., Teixeira, D.C., de Azevedo Moreira, R., Fonseca, M.H.G., Gaudêncio Neto, Martins, L.T., Furtado, G.P., Tavares, K.C.S. (2019) Expression of a recombinant bacterial L-asparaginase in human cells. BMC research notes, 12(1), 794. DOI
  163. Gupta, R., Jung, E., Brunak, S. (2004). Prediction of N-glycosylation sites in human proteins. In: Preparation, 46, 203-206
  164. Zhou, Q., Qiu, H. (2019) The Mechanistic impact of N-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. Journal of pharmaceutical sciences, 108(4), 1366-1377. DOI
  165. Gribben, J.G., Devereux, S., Thomas, N.S., Keim, M., Jones, H.M., Goldstone, A.H., Linch, D.C. (1990) Development of antibodies to unprotected glycosylation sites on recombinant human GM-CSF. Lancet, 335(8687), 434- 437. DOI
  166. Hermeling, S., Crommelin, D.J., Shellekens, H., Jiskoot, W. (2004) Structure-immunogenicity relationships of therapeutic proteins. Pharmaceutical Research, 21(6), 897-903, DOI
  167. Pouresmaeil, M., Azizi-Dargahlou, S. (2023) Factors involved in heterologous expression of proteins in E. coli host. Archives of microbiology, 205(5), 212. DOI
  168. Khushoo, A., Pal, Y., Mukherjee, K.J. (2005) Optimization of extracellular production of recombinant asparaginase in Escherichia coli in shake-flask and bioreactor. Applied microbiology and biotechnology, 68(2), 189-197. DOI
  169. Rosano, G.L., Ceccarelli, E.A. (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5(172), 172. DOI
  170. Derman, A.I., Prinz, W.A., Belin, D., Beckwith, J. (1993) Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science, 262(5140), 1744-1747. DOI
  171. Wang, Y., Qian, S., Meng, G., Zhang, S. (2001) Cloning and expression of L-asparaginase gene in Escherichia coli. Applied biochemistry and biotechnology, 95(2), 93-101. DOI
  172. Goswami, R., Hegde, K., Dasu, V. V.(2015) Production and characterization of novel glutaminase free recombinant L-asparaginase II of Erwinia carotovora subsp. atroseptica SCRI 1043 in E. coli BL21 (DE3). British Microbiology Research Journal. 6(2), 95-112. DOI
  173. Chand, S., Mahajan, R.V., Prasad, J.P., Sahoo, D.K., Mihooliya, K.N., Dhar, M.S., Sharma, G. (2020) A comprehensive review on microbial L-asparaginase: Bioprocessing, characterization, and industrial applications. Biotechnology and applied biochemistry, 67(4), 619-647. DOI
  174. Chi, H., Chen, M., Jiao, L., Lu, Z., Bie, X., Zhao, H., Lu, F. (2021) Characterization of a novel L-asparaginase from Mycobacterium gordonae with acrylamide mitigation potential. Foods, 10(11), 2819. DOI
  175. Pourhossein, M., Korbekandi, H. (2014) Cloning, expression, purification and characterisation of Erwinia carotovora L-asparaginase in Escherichia coli. Advanced biomedical research, 3(1), 82. DOI
  176. Dumina, M.V., Zhgun, A.A., Pokrovskaya, M.V., Aleksandrova, S.S., Zhdanov, D.D., Sokolov, N.N., El’darov, M.A. (2021) Comparison of enzymatic activity of novel recombinant L-asparaginases of extremophiles. Applied Biochemistry and Microbiology, 57(5), 594-602. DOI
  177. Abdullah, E. M., Khan, M. S., Aziz, I. M., Alokail, M. S., Karthikeyan, S., Rupavarshini, M., Bhat, S. A., Ataya, F. S. (2024). Expression, characterization and cytotoxicity of recombinant l-asparaginase II from Salmonella paratyphi cloned in Escherichia coli. International journal of biological macromolecules, 279(Pt 4), 135458. DOI
  178. Dumina, M., Zhgun, A., Pokrovskaya, M., Aleksandrova, S., Zhdanov, D., Sokolov, N., El’darov, M. (2021) A novel L-asparaginase from hyperthermophilic archaeon Thermococcus sibiricus: heterologous expression and characterization for biotechnology application. International journal of molecular sciences, 22(18), 9894. DOI
  179. Farahat, M.G., Amr, D., Galal, A. (2020) Molecular cloning, structural modeling and characterization of a novel glutaminase-free L-asparaginase from Cobetia amphilecti AMI6. International journal of biological macromolecules, 143, 685-695. DOI
  180. Kumar, V., Kumar, R., Sharma, S., Shah, A., Prakash Chaturvedi, C., Verma., D. (2024) Cloning, expression, and characterization of a novel thermoacidophilic l-asparaginase of Pseudomonas aeruginosa CSPS4. 3 Biotech 14, 54 . DOI
  181. Izadpanah Qeshmi, F., Homaei, A., Khajeh, K., Kamrani, E., Fernandes, P. (2022) Production of a novel marine Pseudomonas aeruginosa recombinant L-asparaginase: insight on the structure and biochemical characterization. Marine Biotechnology, 24(3), 599-613. DOI
  182. Karamitros, C.S., Labrou, N. (2014). Extracellular expression and affinity purification of L-asparaginase from E. chrysanthemi in E. coli. Sustainable Chemical Processes, 2(1), 16. DOI
  183. Meena, B., Anburajan, L., Sathish, T., Vijaya, Raghavan, R., Dharani, G., Vinithkumar, N.V., Kirubagaran, R. (2015) L-Asparaginase from Streptomyces griseus NIOT-VKMA29: optimization of process variables using factorial designs and molecular characterization of L-asparaginase gene. Scientific reports, 5(1), 12404. DOI
  184. Meena, B., Anburajan, L., Dheenan, P.S., Begum, M., Vinithkumar, N.V., Dharani, G., Kirubagaran, R. (2015) Novel glutaminase free L-asparaginase from Nocardiopsis alba NIOT-VKMA08: production, optimization, functional and molecular characterization. Bioprocess and Biosystems Engineering, 38(2), 373-388. DOI
  185. Meena, B., Anburajan, L., Vinithkumar, N.V., Shridhar, D., Raghavan, R.V., Dharani, G., Kirubagaran, R. (2016) Molecular expression of L-asparaginase gene from Nocardiopsis alba NIOT-VKMA08 in Escherichia coli: A prospective recombinant enzyme for leukaemia chemotherapy. Gene, 590(2), 220-226. DOI
  186. Hegazy, W., Abdel-Salam, M.S., Moharam, M. (2020). Biotechnological approach for the production of L-asparaginase from locally Bacillus subtilis isolate. Egyptian Pharmaceutical Journal. 19(2), 155-161. DOI
  187. de Moura, W.A.F., Schultz, L., Breyer, C.A., de Oliveira A.L.P., Tairum, C.A., Fernandes, G.C., Toyama, M.H., Pessoa-Jr, A., Monteiro, G., de Oliveira, M.A. (2020) Functional and structural evaluation of the antileukaemic enzyme L-asparaginase II expressed at low temperature by different Escherichia coli strains. Biotechnology letters, 42(11), 2333-2344. DOI
  188. Kotzia, G.A., Labrou, N.E. (2007) L-asparaginase from Erwinia Chrysanthemi 3937: cloning, expression and characterization. Journal of biotechnology, 127(4), 657-669. DOI
  189. Saeed, H., Hemida, A., El-Nikhely, N., Abdel-Fattah, M., Shalaby, M., Hussein, A., Eldoksh, A., Ataya, F., Aly, N., Labrou, N., Nematalla, H. (2020) Highly efficient Pyrococcus furiosus recombinant L-asparaginase with no glutaminase activity: Expression, purification, functional characterization, and cytotoxicity on THP-1, A549 and Caco-2 cell lines. International journal of biological macromolecules, 156(3), 812-828. DOI
  190. Chohan, S.M., Rashid, N., Sajed, M., Imanaka, T. (2019) Pcal_0970: an extremely thermostable L-asparaginase from Pyrobaculum calidifontis with no detectable glutaminase activity. Folia Microbiol (Praha). 64(3), 313-320. DOI
  191. Souza, C.C., Guimarães, J.M., Pereira, S.D.S., Mariúba, L.A.M. (2021) The multifunctionality of expression systems in Bacillus subtilis: Emerging devices for the production of recombinant proteins. Experimental biology and medicine (Maywood, N.J.), 246(23), 2443-2453. DOI
  192. Gomes, A.R., Byregowda, S.M., Veeregowda, B.M., Vinayagamurthy, Balamurugan. (2016). An Overview of heterologous expression host systems for the production of recombinant proteins. Advances in Animal and Veterinary Sciences, 4(7), 346-356. DOI
  193. Niu, J., Meng, F., Zhou, Y., Zhang, C., Lu, Z., Lu, F., Chen, M. (2021). Nonclassical secretion of a type I L-asparaginase in Bacillus subtilis. International journal of biological macromolecules, 180, 677-683. DOI
  194. Yang, H., Qu, J., Zou, W., Shen, W., Chen, X. (2021) An overview and future prospects of recombinant protein production in Bacillus subtilis. Applied microbiology and biotechnology, 105(18), 6607-6626. DOI
  195. Cui, W., Han, L., Suo, F., Liu, Z., Zhou, L., Zhou, Z. (2018) Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World journal of microbiology & biotechnology, 34(10), 145. DOI
  196. Bento, H.B.S., Paiva, G.B., Almeida, M.R., Silva, C.G., Carvalho, P.J., Tavares, A.P.M., Pedrolli, D.B., Santos-Ebinuma, V.C. (2022) Aliivibrio fischeri L-asparaginase production by engineered Bacillus subtilis: a potential new biopharmaceutical. Bioprocess and biosystems engineering, 45(10), 1635-1644. DOI
  197. Li, X., Zhang, X., Xu, S., Zhang, H., Xu, M., Yang, T., Wang, L., Qian, H., Zhang, H., Fang, H., Osire, T., Rao, Z., Yang, S. (2018) Simultaneous cell disruption and semi-quantitative activity assays for high-throughput screening of thermostable L-asparaginases. Scientific reports, 8(1), 7915. DOI
  198. Chityala, S., Venkata Dasu, V., Ahmad, J., Prakasham, R.S. (2015) High yield expression of novel glutaminase free L-asparaginase II of Pectobacterium carotovorum MTCC 1428 in Bacillus subtilis WB800N. Bioprocess and Biosystems Engineering, 38(11), 2271-2284. DOI
  199. Feng, Y., Liu, S., Jiao, Y., Gao, H., Wang, M., Du, G., Chen, J. (2017) Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy. Applied microbiology and biotechnology, 101(4), 1509-1520. DOI
  200. Boni, I.V., Isaeva, D.M., Musychenko, M.L., Tzareva, N.V. (1991) Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic acids research, 19(1), 155-162. DOI
  201. Oza, V.P., Parmar, P.P., Patel, D.H., Subramanian, R.B. (2011) Cloning, expression and characterization of L-asparaginase from Withania somnifera L. for large scale production. 3 Biotechnology, 1(1), 21-26. DOI
  202. Jacob, F., Monod, J. (1961) Genetic regulatory mechanisms in the synthesis of proteins. Journal of molecular biology, 3, 318–356. DOI
  203. Duzenli, O.F., Okay, S. (2020) Promoter engineering for the recombinant protein production in prokaryotic systems. AIMS Bioengineering, 7(2), 62-81. DOI
  204. Deuschle, U., Kammerer, W., Gentz, R., Bujard, H. (1986) Promoters of Escherichia coli: a hierarchy of in vivo strength indicates alternate structures. The EMBO journal, 5(11), 2987-2994. DOI
  205. Gaal, T., Barkei, J., Dickson, R.R., de Boer, H.A., de Haseth, P.L., Alavi, H., Gourse, R.L. (1989) Saturation mutagenesis of an Escherichia coli rRNA promoter and initial characterization of promoter variants. Journal of bacteriology, 171(9), 4852-4861. DOI
  206. Hsu, L.M., Giannini, J.K., Leung, T.W., Crosthwaite, J.C. (1991) Upstream sequence activation of Escherichia coli argT promoter in vivo and in vitro. Biochemistry, 30(3), 813-822. DOI
  207. Josaitis, C.A., Gaal, T., Ross, W., Gourse, R. L. (1990) Sequences upstream of the-35 hexamer of rrnB P1 affect promoter strength and upstream activation. Biochimica et biophysica acta, 1050(1-3), 307-311. DOI
  208. Zacharias, M., Göringer, H.,U. Wagner, R. (1992) Analysis of the Fisdependent and Fis-independent transcription activation mechanisms of the Escherichia coli ribosomal RNA P1 promoter. Biochemistry. 31(9), 2621-2628. DOI
  209. Rao, L., Ross, W., Appleman, J.A., Gaal, T., Leirmo, S., Schlax, P.J., Record, M.T., Jr., Gourse, R.L. (1994) Factor independent activation of rrnB P1. An “extended” promoter with an upstream element that dramatically increases promoter strength. Journal of molecular biology, 235(5), 1421-1435. DOI
  210. Ross, W., Gosink, K.,K., Salomon, J., Igarashi, K., Zou, C., Ishihama, A., Severinov, K., Gourse, R.L. (1993) A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science, 262(5138), 1407-1413. DOI
  211. Lisser, S., Margalit, H. (1993) Compilation of E. coli mRNA promoter sequences. Nucleic acids research, 21(7), 1507-1516. DOI
  212. Darwesh, D.B., Al-Awthan, Y.S., Elfaki, I., Habib, S.A., Alnour, T.M., Darwish, A.B., Youssef, M.M. (2022) Anticancer Activity of Extremely Effective Recombinant L-Asparaginase from Burkholderia pseudomallei. Journal of microbiology and biotechnology, 325(5), 551-563. DOI
  213. Saeed, H., Hemida, A., Abdel-Fattah, M., Eldoksh, A., Shalaby, M., Nematalla, H., El-Nikhely, N., Elkewedi, M. (2021) Pseudomonas aeruginosa recombinant L-asparaginase: Large scale production, purification, and cytotoxicity on THP-1, MDA-MB-231, A549, Caco2 and HCT-116 cell lines. Protein expression and purification, 181(2C), 105820. DOI
  214. Wang, Y., Liu, Q., Weng, H., Shi, Y., Chen, J., Du, G., Kang, Z. (2019) Construction of synthetic promoters by assembling the sigma factor binding -35 and -10 Boxes. Biotechnology journal, 14(1):e1800298. DOI
  215. Lozano Terol, G., Gallego-Jara, J., Sola Martínez, R.A., Martínez Vivancos, A., Cánovas Díaz, M., de Diego Puente, T. (2021) Impact of the expression system on recombinant protein production in Escherichia coli BL21. Frontiers in Microbiology, 12, 682001. DOI
  216. Ehl’darov, M. A., Zhgun, A.A.,Gervaziev, J.V., Aleksandrova, S.S.,Omel’janjuk, N.M., Archakov, A.I. Skrjabin, K.G., Sokolov, N.N. Gene encoding L-asparaginase in Erwinia Carotovora and strain Escherichia coli VKPM = B-8174 as producer of Erwinia Carotovora L-asparaginase (Patent No. RF №2221868,МПКC12N, 2004).
  217. Jayapal, K.P., Lian, W., Glod, F., Sherman, D.H., Wei-Shou Hu, W.S. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics 8, 229 (2007). DOI
  218. Roth, G., Nunes, J.E.S., Rosado, L.A., Bizarro, C., Volpato, G., Nunes, C.P., Renard, G., Basso, L.A., Santos, D.S., Chies, J.M. (2013) Recombinant Erwinia carotovora L-asparaginase II production in Escherichia coli fed-batch cultures. Brazilian journal of chemical engineering, 30(2), 245-256. DOI
  219. Lee, G., Saito, I. (1998) Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene. 216(1), 55-65. DOI
  220. Turan, S., Kuehle, J., Schambach, A., Baum, C., Bode, J. (2010) Multiplexing RMCE: versatile extensions of the Flp-recombinase-mediated cassette-exchange technology. Journal of molecular biology, 402(1), 52-69. DOI
  221. Turan, S., Galla, M., Ernst, E., Qiao, J., Voelkel, C., Schiedlmeier, B., Zehe, C., Bode, J. (2011) Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. Journal of molecular biology, 407(2), 193-221. DOI
  222. Wang, Y., Yau, Y., Perkins-Balding, D., Thomson, J. (2011) Recombinase technology: applications and possibilities. Plant cell reports, 30(3), 267-285. DOI
  223. Schalk, A.M., Nguyen H.A., Rigouin, C., Lavie , A. ( 2014) Identification and Structural Analysis of an l-Asparaginase Enzyme from Guinea Pig with Putative Tumor Cell Killing Properties Journal of Biological Chemistry, 289(48), 33175-33186. DOI
  224. Sajed, M., Falak, S., Muhammad, M.A., Ahmad, N., Rashid, N. (2022). A plant-type L-asparaginase from Pyrobaculum calidifontis undergoes temperature dependent autocleavage. Biologia, 77(12), 1-9. DOI
  225. Jia, M., Xu, M., He, B., Rao, Z. (2013) Cloning, expression, and characterization of L-asparaginase from a newly isolated Bacillus subtilis B11- 06. Journal of agricultural and food chemistry, 61(39), 9428-9434. DOI
  226. Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., Gregory, P.D. (2010) Genome editing with engineered zinc finger nucleases. Nature reviews. Genetics, 11(9), 636-646. DOI
  227. Carroll, D. (2011) Genome engineering with zinc-finger nucleases. Genetics, 188(4), 773-782. DOI
  228. Christian, M., Cermak, T., Doyle, E.L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A.J., Voytas, D.F. (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186(2), 757-761. DOI
  229. Christian, M., Voytas, D.F. (2015). Engineered TAL effector proteins: versatile reagents for manipulating plant genomes. In Advances in new technology for targeted modification of plant genomes. (Zhang, F., Puchta, H., Thomson, J. eds) New York, NY.pp. 55-72. DOI
  230. Sun, N., Zhao, H. (2013) Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnology and bioengineering, 110(7), 1811-1821. DOI
  231. Alba Burbano, D., Cardiff, R.A.L., Tickman, B.I., Kiattisewee, C., Maranas, C.J., Zalatan, J.G., Carothers, J.M. (2023) Engineering activatable promoters for scalable and multi-input CRISPRa/i circuits. Proceedings of the National Academy of Sciences of the United States of America, 120(30), e2220358120. DOI
  232. Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F.J., Wolf, Y.I., Yakunin, A.F., van der Oost, J., Koonin, E.V. (2011) Evolution and classification of the CRISPR-Cas systems. Nature reviews. Microbiology, 9(6), 467-477. DOI
  233. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823. DOI
  234. Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., Zhang, F. (2013) Genome engineering using the CRISPR-Cas9 system. Nature protocols, 8(11), 2281-2308. DOI
  235. Hsu, P.D., Lander, E.S., Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262-1278. DOI
  236. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. DOI
  237. Brazelton, V.A., Jr, Zarecor, S., Wright, D.A., Wang, Y., Liu, J., Chen, K., Yang, B., Lawrence-Dill, C.J. (2015) A quick guide to CRISPR sgRNA design tools. GM crops food, 6(4), 266-276. DOI
  238. Sahel, D.K., Vora, L.K., Saraswat, A., Sharma, S., Monpara, J., D’Souza, A.A., Mishra, D., Tryphena, K.P., Kawakita, S., Khan, S., Azhar, M., Khatri, D.K., Patel, K., Singh Thakur, R.R. (2023) CRISPR/Cas9 Genome Editing for Tissue-Specific In Vivo Targeting: Nanomaterials and Translational Perspective. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 10(19), e2207512. DOI
  239. Bannikov, A.V., Lavrov, A.V. (2017) CRISPR/CAS9, the King of Genome Editing Tools. Molekuliarnaia biologiia, (Mosk). 51(4), 582-594. DOI
  240. Fontana, J., Sparkman-Yager, D., Zalatan, J.G., Carothers, J.M. (2020) Challenges and opportunities with CRISPR activation in bacteria for datadriven metabolic engineering. Current opinion in biotechnology, 64, 190-198. DOI
  241. Costa, I. M., Effer, B., Costa-Silva, T. A., Chen, C., Ciccone, M. F., Pessoa, A., Dos Santos, C. O., Monteiro, G. (2023). Cathepsin B Is Not an Intrinsic Factor Related to Asparaginase Resistance of the Acute Lymphoblastic Leukemia REH Cell Line. International journal of molecular sciences, 24(13), 11215. DOI
  242. Weninger, A., Hatzl, A.M., Schmid, C., Vogl, T., Glieder, A. (2016). Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. Journal of Biotechnology, 235, 139-149. DOI
  243. Gu, Y., Xu, X., Wu, Y., Niu, T., Liu, Y., Li, J., Du, G., Liu, L. (2018) Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metabolic engineering, 50, 109-121. DOI
  244. Gao, J., Jiang, L., Lian, J. (2021) Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products. Synthetic and systems biotechnology, 6(2), 110-119. DOI
  245. Thor, D., Xiong, S., Orazem, C.C., Kwan, A.C., Cregg, J.M., Lin- Cereghino, J., Lin-Cereghino, G.P. (2005) Cloning and characterization of the Pichia pastoris MET2 gene as a selectable marker. FEMS yeast research, 5(10), 935-942. DOI
  246. Piva, L.C., Bentacur, M.O., Reis, V.C.B., De Marco, J.L., Moraes, L.M.P., Torres, F.A.G. (2017) Molecular strategies to increase the levels of heterologous transcripts in Komagataella phaffii for protein production. Bioengineered, 8(5), 441-445. DOI
  247. Das, A. (1990) Overproduction of proteins in Escherichia coli: vectors, hosts, and strategies. Methods in enzymology, 182, 93-112. DOI
  248. Balbas, P., Bolivar, F. (1990) Design and construction of expression plasmid vectors in Escherichia coli. Methods in enzymology, 185, 14-37. DOI
  249. Brosius, J. (1992) Compilation of superlinker vectors. Methods in enzymology, 216, 469-483. DOI
  250. MacFerrin, K.D., Chen, L., Terranova, M.P., Schreiber, S.L., Verdine, G.L. (1993) Overproduction of proteins using expression-cassette polymerase chain reaction. Methods in enzymology, 217, 79-102. DOI
  251. Yansura, D.G., Henner, D.J. (1990) Use of Escherichia coli trp promoter for direct expression of proteins. Methods in enzymology, 185, 54-60. DOI
  252. Anné, J., Economou, A., Bernaerts, K. (2017) Protein Secretion in Gram- Positive Bacteria: From Multiple Pathways to Biotechnology. Current topics in microbiology and immunology, 404, 267-308. DOI
  253. Sambrook, J., Russell, D. (2012) Molecular Cloning: A Laboratory Manual, 3rd ed., Vols 1,2 and 3 ed., Cold Spring Harbor Laboratory Press, 2100 pp.
  254. Walker J.M., Ralph Rapley (2000) Molecular biology and biotechnology. The royal society of chemistry , London. DOI
  255. Huang, L., Liu, Y., Sun, Y., Yan, Q., Jiang, Z. (2014) Biochemical characterization of a novel L-asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment. Applied and environmental microbiology, 80(5), 1561-1569. DOI
  256. Labes, M., Pühler, A., Simon, R. (1990) A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for gram-negative bacteria. Gene, 89(1), 37-46. DOI
  257. Balbas, P., Soberon, X., Bolivar, F., Rodriguez, R.L. (1988). The plasmid, pBR322. Biotechnology, 10, 5-41. DOI
  258. Li, P., Anumanthan, A., Gao, X.G., Ilangovan, K., Suzara, V.V., Düzgüneş, N., Renugopalakrishnan, V. (2007) Expression of recombinant proteins in Pichia pastoris. Applied biochemistry and biotechnology, 142(2), 105-124. DOI
  259. de Boer, H.A., Comstock, L.J., Vasser, M. (1983) The tac promoter: a functional hybrid derived from the trp and lac promoters. Proceedings of the National Academy of Sciences of the United States of America 80(1), 21-25. DOI
  260. Hayat, S.M.G., Farahani, N., Golichenari, B., Sahebkar A.H. (2018) Recombinant protein expression in Escherichia coli (E. coli): What We Need to Know. Current pharmaceutical design, 24(6), 718-725. DOI
  261. San, K.Y., Bennett, G.N., Chou, C.H., Aristidou, A.A. (1994) An optimization study of a pH-inducible promoter system for high-level recombinant protein production in Escherichia coli. Annals of the New York academy of sciences, 721, 268-276. DOI
  262. Chou, C.H., Aristidou, A.A., Meng, S.Y., Bennett, G.N., San, K.Y. (1995) Characterization of a pH-inducible promoter system for high-level expression of recombinant proteins in Escherichia coli. Biotechnology and bioengineering, 47(2), 186-192. DOI
  263. Tolentino, G.J., Meng, S.Y., Bennett, G.N., San, K.Y. (1992) A pH-regulated promoter for the expression of recombinant proteins in Escherichia coli. Biotechnology letters, 14, 157-162. DOI
  264. Giladi, H., Goldenberg, D., Koby, S., Oppenheim, A.B. (1995) Enhanced activity of the bacteriophage lambda PL promoter at low temperature. Proceedings of the National Academy of Sciences of the United States of America, 92(6), 2184-2188. DOI
  265. Tanabe, H., Goldstein, J., Yang, M., Inouye, M. (1992) Identification of the promoter region of the Escherichia coli major cold shock gene, cspA. Journal of bacteriology, 174(12), 3867-3873. DOI
  266. Oppenheim, A.B., Giladi, H., Goldenberg, D., S. Kobi, S., Azar, I. (1996) Vectors and transformed host cells for recombinant protein production at reduced temperatures. International patent application patent/US5726039A
  267. Goldstein, M.A., Doi, R.H. (1995) Prokaryotic promoters in biotechnology. Biotechnology annual review, 1, 105-128. DOI
  268. Bentley, W.E., Mirjalili, N., Andersen, D.C., Davis, R.H., Kompala, D.S. (1990) Plasmid-encoded protein: the principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnology and bioengineering, 35(7), 668-681. DOI
  269. Minas, W., Bailey, J.E. (1995) Co-overexpression of prlF increases cell viability and enzyme yields in recombinant Escherichia coli expressing Bacillus stearo thermophilus alpha-amylase. Biotechnology progress, 11(4), 403-411. DOI
  270. Chen, W., Kallio, P.T., Bailey, J.E. (1995) Process characterization of a novel cross-regulation system for cloned protein production in Escherichia coli. Biotechnology progress, 11(4), 397-402. DOI
  271. Mertens, N., Remaut, E., Fiers, W. (1995) Tight transcriptional control mechanism ensures stable high-level expression from T7 promoter-based expression plasmids. Biotechnology (N Y), 13(2), 175-179. DOI
  272. Depicker, A., Montagu, M.V. (1997) Post-transcriptional gene silencing in plants. Current opinion in cell biology, 9(3), 373-382. DOI
  273. O’Connor, C.D., Timmis, K.N. (1987) Highly repressible expression system for cloning genes that specify potentially toxic proteins. Journal of bacteriology, 169(10), 4457-4462. DOI
  274. Brown, W.C., Campbell, J.L. (1993) A new cloning vector and expression strategy for genes encoding proteins toxic to Escherichia coli. Gene, 127(1), 99-103. DOI
  275. Doherty, A.J., Connolly, B.A., Worrall, A.F. (1993) Overproduction of the toxic protein, bovine pancreatic DNaseI, in Escherichia coli using a tightly controlled T7-promoter-based vector. Gene.136(1-2), 337-340. DOI
  276. Suter-Crazzolara, C., Unsicker, K. (1995) Improved expression of toxic proteins in E. coli. Biotechniques, 19(2), 202-204; ISSN: 0736-6205
  277. Trudel, P., Provost, S., Massie, B., Chartrand, P., Wall, L. (1996) pGATA: a positive selection vector based on the toxicity of the transcription factor GATA- 1 to bacteria. Biotechniques, 20(4), 684-693. DOI
  278. Wülfing, C., Plückthun, A. (1993) A versatile and highly repressible Escherichia coli expression system based on invertible promoters: expression of a gene encoding a toxic product. Gene, 136(1-2), 199-203. DOI
  279. Zeng, H., Yang, A. (2019) Quantification of proteomic and metabolic burdens predicts growth retardation and overflow metabolism in recombinant Escherichia coli. Biotechnology and Bioengineering. 116(6):1484–95.
  280. Guleria, R., Jain, P., Verma, M., Mukherjee K.J. Designing next generation recombinant protein expression platforms by modulating the cellular stress response in Escherichia coli. Microb Cell Fact 19, 227 (2020). DOI
  281. Mahalik, S., Sharma, A. K., Jain, P., Mukherjee, K. J. (2017). Identifying genomic targets for protein over-expression by “omics” analysis of Quiescent Escherichia coli cultures. Microbial cell factories, 16 (1), 133. DOI
  282. Mahalik, S., Sharma, A., Das, D.R., Mittra, D., Mukherjee, K. J. (2022). Co-expressing leucine responsive regulatory protein (Lrp) enhances recombinant L-asparaginase-II production in Escherichia coli. Journal of biotechnology, 351, 99-108. DOI
  283. Sharma, A.K., Shukla, E., Janoti, D.S., Mukherjee, K.J., Shiloach, J. (2020) A novel knock out strategy to enhance recombinant protein expression in Escherichia coli. Microbial cell factories, 19(1), 148. DOI
  284. Laxa, M. ( 2017) Intron-mediated enhancement: a tool for heterologous gene expression in plants? Frontiers in plant science, 7, 1977. DOI
  285. Georgiou, G., Valax, P. (1996) Expression of correctly folded proteins in Escherichia coli. Current opinion in biotechnology, 7(2), 190-197. DOI
  286. Andrews, B., Adari, H., Hannig, G., Lahue, E., Gosselin, M., Martin, S., Ahmed, A., Ford, P.J., Hayman, E.G., Makrides, S.C. (1996) A tightly regulated high level expression vector that utilizes a thermosensitive lac repressor: production of the human T cell receptor V beta 5.3 in Escherichia coli. Gene, 182(1-2), 101-109. DOI
  287. Freundlich, M., Ramani, N., Mathew, E., Sirko, A., Tsui, P. (1992) The role of integration host factor in gene expression in Escherichia coli. Molecular microbiology, 6(18), 2557-2563. DOI
  288. Giladi, H., Koby, S., Gottesman, M.E., Oppenheim, A.B. (1992) Supercoiling, integration host factor, and a dual promoter system, participate in the control of the bacteriophage lambda pL promoter. Journal of molecular biology, 224(4), 937-948. DOI
  289. Harms, E., Wehner, A., Jennings, M.P., Pugh, K.J., Beacham, I.R., Rohm, K.H. (1991) Construction of expression systems for E. coli asparaginase II and two-step purification of the recombinant enzyme from periplasmic extracts. Protein expression and purification, 2, 144–150.
  290. Khushoo, A., Pal, Y., Singh, B.N., Mukherjee, K.J. (2004) Extracellular expression and single step purification of recombinant Escherichia coli L-asparaginase II. Protein expression and purification, 38(1), 29-36. DOI
  291. Galas, D.J., Eggert, M., Waterman, M.S. (1985) Rigorous patternrecognition methods for DNA sequences. Analysis of promoter sequences from Escherichia coli. Journal of molecular biology, 186(1), 117-128. DOI
  292. Du, F., Liu, Y.Q., Xu, Y.S., Fei, Du, Li, Z.J., Wang, Y.Z., Zhang, Z.X., Sun, X.M. (2021) Regulating the T7 RNA polymerase expression in E. coli BL21 (DE3) to provide more host options for recombinant protein production. Microbial cell factories, 20, 189. DOI
  293. Lisser, S., Margalit, H. (1993). Compilation of E. coli mRNA promoter sequences. Nucleic acids research, 21(7), 1507–1516. DOI
  294. Chohan, S.M., Rashid, N. (2013) TK1656, a thermostable L-asparaginase from Thermococcus kodakaraensis, exhibiting highest ever reported enzyme activity. Journal of bioscience and bioengineering, 116(4), 438-443. DOI
  295. Remaut, E., Tsao, H., Fiers, W. (1983) Improved plasmid vectors with a thermoinducible expression and temperature-regulated runaway replication. Gene, 22(1), 103-113. DOI
  296. Yang, J., Ruff, A. J., Hamer, S. N., Cheng, F., Schwaneberg, U. (2016). Screening through the PLICable promoter toolbox enhances protein production in Escherichia coli. Biotechnology journal, 11(12), 1639-1647. DOI
  297. Mohammadzadeh, R., Karbalaei, M., Soleimanpour, S., Mosavat, A., Rezaee, S.A., Ghazvini, K., Farsiani, H. (2021) Practical methods for expression of recombinant protein in the Pichia pastoris system. Current protocols, 1(6), e155. DOI
  298. Vogl, T. (2022) Engineering of promoters for gene expression in Pichia pastoris. Methods in molecular biology, 2513, 153-177. DOI
  299. Yang, J., Cai, H., Liu, J., Zeng, M., Chen, J., Cheng, Q., Zhang, L. (2018) Controlling AOX1 promoter strength in Pichia pastoris by manipulating poly (dA:dT) tracts. Scientific reports, 8(1), 1401. DOI
  300. Özçelik, A., Yılmaz, S., Inan, M. (2019) Pichia pastoris Promoters. Methods in molecular biology, 1923, 97-112. DOI
  301. Effer, B., Lima, G.M., Cabarca, S., Pessoa, A., Farías, J.G., Monteiro, G. (2019) L-asparaginase from E. chrysanthemi expressed in Glycoswitch®: effect of His-Tag fusion on the extracellular expression. Preparative biochemistry & biotechnology, 49(7), 679-685. DOI
  302. Vogl, T., Kickenweiz, T., Pitzer, J., Sturmberger, L., Weninger, A., Biggs, B.W., Köhler, E.M., Baumschlager, A., Fischer, J.E., Hyden, P., Wagner, M., Baumann, M., Borth, N., Geier, M., Ajikumar, P.K., Glieder, A. (2018) Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nature communications, 9(1), 3589. DOI
  303. Tien Cuong, Nguyen, Nguyen, Trang, Tuyen, Do, Thi, Quyen, D.T. (2014). Expression, purification and evaluation of recombinant L-asparaginase in mehthylotrophic yeast Pichia pastoris. Journal of Vietnamese Environment 6(3):288-292 DOI
  304. Yang, S., Du, G., Chen, J., Kang, Z. (2017) Characterization and application of endogenous phase-dependent promoters in Bacillus subtilis. Applied microbiology and biotechnology, 101(10), 4151-4161. DOI
  305. Niu, J., Yan, R., Shen, J., Zhu, X., Meng, F., Lu, Z., Lu, F. (2022). Cis-element engineering promotes the expression of Bacillus subtilis type I L-asparaginase and its application in food. International Journal of Molecular Sciences, 23 (12), 6588. DOI
  306. Rao, Y., Cai, D., Wang, H., Xu, Y., Xiong, S., Gao, L., Xiong, M., Wang, Z., Chen, S., Ma, X. (2020) Construction and application of a dual promoter system for efficient protein production and metabolic pathway enhancement in Bacillus licheniformis. Journal of biotechnology, 312, 1-10. DOI
  307. Zhao, X., Xu, J., Tan, M., Zhen, J., Shu, W., Yang, S., Ma, Y., Zheng, H., Song, H. (2020) High copy number and highly stable Escherichia coli-Bacillus subtilis shuttle plasmids based on pWB980. Microbial Cell Factories, 19(1), 25. DOI
  308. Schumann, W. (2007) Production of recombinant proteins in Bacillus subtilis. Advances in applied microbiology, 2, 137-189. DOI
  309. Erden-Karaoğlan, F., Karaoğlan, M. (2023) Improvement of recombinant L-asparaginase production in Pichia pastoris. 3 Biotech, 13(5), 164. DOI
  310. McCarthy, J.E., Brimacombe, R. (1994) Prokaryotic translation: the interactive pathway leading to initiation. Trends in genetics, 10(11), 402-407. DOI
  311. Ringquist, S., Shinedling, S., Barrick, D., Green, L., Binkley, J., Stormo, G.D., Gold, L. (1992) Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Molecular microbiology, 6(9), 1219-1229. DOI
  312. Kozak, M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene, 234(2), 187-208. DOI
  313. de Smit, M.H., van Duin, J. (1994) Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. Journal of molecular biology, 244(2), 144-150. DOI
  314. Shine, J., Dalgarno, L. (1974) The 3’-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences of the United States of America, 71(4), 1342-1346. DOI
  315. Hüttenhofer, A., Noller, H.F. (1994) Footprinting mRNA-ribosome complexes with chemical probes. The EMBO journal, 13(16), 3892-3901. DOI
  316. Scherer, G.F., Walkinshaw, M.D., Arnott, S., Morré, D.J. (1980) The ribosome binding sites recognized by E. coli ribosomes have regions with signal character in both the leader and protein coding segments. Nucleic acids research, 8(17), 3895-3907. DOI
  317. Chen, H., Bjerknes, M., Kumar, R., Jay, E. (1994) Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic acids research, 22(23), 4953-4957. DOI
  318. Chen, H., Pomeroy-Cloney, L., Bjerknes, M., Tam, J., Jay, E. (1994) The influence of adenine-rich motifs in the 3’ portion of the ribosome binding site on human IFN-gamma gene expression in Escherichia coli. Journal of molecular biology, 240(1), 20-27. DOI
  319. Wilson, B.S., Kautzer, C.R., Antelman, D.E. (1994) Increased protein expression through improved ribosome-binding sites obtained by library mutagenesis. Biotechniques, 17(5), 944-953.
  320. Nishi, T., Itoh, S. (1986) Enhancement of transcriptional activity of the Escherichia coli trp promoter by upstream A + T-rich regions. Gene, 44(1), 29- 36. DOI
  321. Stanssens, P., Remaut, E., Fiers, W. (1985) Alterations upstream from the Shine-Dalgarno region and their effect on bacterial gene expression. Gene, 36(3), 211-223. DOI
  322. Warburton, N., Boseley, P.G., Porter, A.G. (1983) Increased expression of a cloned gene by local mutagenesis of its promoter and ribosome binding site. Nucleic acids research, 11(17), 5837-5854. DOI
  323. Salis, H.M., Mirsky, E.A., Voigt, C.A. (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nature biotechnology, 27(10), 946-950. DOI
  324. Zhu, M., Zhang, X., Wang, Z., Lin, W., Xu, M., Yang, T., Shao, M., Rao, Z. (2021) Molecular modification and highly efficient expression of L-asparaginase from Rhizomucor miehei. Chinese Journal of Biotechnology, 37(9), 3242-3252. DOI
  325. Stormo, G.D., Schneider, T.D., Gold, L.M. (1982) Characterization of translational initiation sites in E. coli. Nucleic acids research, 10(9), 2971-2996. DOI
  326. Sprengart, M.L., Fuchs, E., Porter, A.G. (1996) The downstream box: an efficient and independent translation initiation signal in Escherichia coli. The EMBO journal, 15(3), 665-674
  327. de Smit, M.H., van Duin, J. (1990) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proceedings of the National Academy of Sciences of the United States of America, 87(19), 7668-7672. DOI
  328. Hall, M.N., Gabay, J., Débarbouillé, M., Schwartz, M. (1982) A role for mRNA secondary structure in the control of translation initiation. Nature, 295(5850), 616-618. DOI
  329. Wikström, P.M., Lind, L.K., Berg, D.E., Björk, G.R. (1992) Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli. Journal of molecular biology, 224(4), 949-966. DOI
  330. Gross, G., Mielke, C., Hollatz, I., Blöcker, H., Frank, R. (1990) RNA primary sequence or secondary structure in the translational initiation region controls expression of two variant interferon-beta genes in Escherichia coli. The Journal of biological chemistry, 265(29), 17627-17636. DOI
  331. Ramesh, V., De, A., Nagaraja, V. (1994) Engineering hyperexpression of bacteriophage Mu C protein by removal of secondary structure at the translation initiation region. Protein engineering, 7(8), 1053-1057. DOI
  332. Nora, L.C., Westmann, C.A., Martins-Santana, L., Alves, L.F., Monteiro, L.M.O., Guazzaroni, M.E., Silva-Rocha, R. (2019) The art of vector engineering: towards the construction of next-generation genetic tools. Microbial biotechnology, 12(1), 125-147. DOI
  333. Rosenberg, M., Court, D. (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Annual review of genetics, 13, 319-353. DOI
  334. Sharp, P.M., Bulmer, M. (1988) Selective differences among translation termination codons. Gene, 63(1), 141-145. DOI
  335. Poole, E.S., Brown, C.M., Tate, W.P. (1995) The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. The EMBO journal, 14(1), 151-158. DOI
  336. Tate, W.P., Brown, C.M. (1992) Translational termination: “stop” for protein synthesis or “pause” for regulation of gene expression. Biochemistry, 31(9), 2443-2450. DOI
  337. Chamberlin, M.J. (1992) New models for the mechanism of transcription elongation and its regulation. Harvey lectures, 88:1-21.
  338. Platt, T. ( 1986) Transcription termination and the regulation of gene expression. Annual review of biochemistry, 55, 339-372. DOI
  339. Richardson, J.P. (1993) Transcription termination. Critical reviews in biochemistry and molecular biology, 28(1), 1-30. DOI
  340. Richardson J.P, Greenblatt J.L. (1996) Control of RNA chain elongation and termination. In Escherichia coli and Salmonella: Cellular and Molecular Biology (Neidhardt, F.ed.) Washington, DC, pp. 822-848
  341. Jensen, K., Bonekamp, F., Scharff-Poulsen, Peter. (1986) Attenuation at nucleotide biosynthetic genes and amino acid biosynthetic operons of Escherichia coli. Trends in Biochemical Sciences, 11(9), 362-365. DOI
  342. Qayyum, M.Z., Dey, D., Sen, R. (2016) Transcription Elongation Factor NusA Is a General Antagonist of Rho-dependent Termination in Escherichia coli.The Journal of biological chemistry, 291(15), 8090-8108. DOI
  343. Brosius, J., Ullrich, A., Raker, M.A., Gray, A., Dull, T.J., Gutell, R.R., Noller, H.F. (1981) Construction and fine mapping of recombinant plasmids containing the rrnB ribosomal RNA operon of E. coli. Plasmid, 6(1), 112-118. DOI
  344. Condon, C., Squires, C., Squires, C.L. (1995) Control of rRNA transcription in Escherichia coli. Microbiological reviews, 59(4), 623-645. DOI
  345. Kane, J.F. (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Current opinion in biotechnology, 6(5), 494-500. DOI
  346. Zhang, S.P., Zubay, G., Goldman, E. (1991) Low-usage codons in Escherichia coli, yeast, fruit fly and primates. Gene, 105(1), 61-72. DOI
  347. Xu, Y., Liu, K., Han, Y., Xing, Y., Zhang, Y., Yang, Q., Zhou, M. (2021) Codon usage bias regulates gene expression and protein conformation in yeast expression system P. pastoris. Microbial Cell Factories, 20(1), 91. DOI
  348. Gouy, M., Gautier, C. (1982) Codon usage in bacteria: correlation with gene expressivity. Nucleic acids research, 10(22), 7055-7074. DOI
  349. Dana, A., Tuller, T. (2014) The effect of tRNA levels on decoding times of mRNA codons. Nucleic acids research, 42(14), 9171-9181. DOI
  350. Sharp, P.M., Cowe, E., Higgins, D.G., Shields, D.C., Wolfe, K.H., Wright, F. (1988) Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable withinspecies diversity. Nucleic acids research, 16(17), 8207-8211. DOI
  351. Yu, C.H., Dang, Y., Zhou, Z., Wu, C., Zhao, F., Sachs, M.S., Liu, Y. (2015) Codon usage influences the local rate of translation elongation to regulate cotranslational protein folding. Molecular cell, 59(5), 744-754. DOI
  352. Singha, T. K., Gulati, P., Mohanty, A., Khasa, Y. P., Kapoor, R. K., Kumar, S. (2017). Efficient genetic approaches for improvement of plasmid based expression of recombinant protein in Escherichia coli: A review. Process Biochemistry, 55, 17-31. DOI
  353. Chen, G.T., Inouye, M. (1994) Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli. Genes & development, 8(21), 2641-2652. DOI
  354. Chen, K.S., Peters, T.C., Walker, J.R. (1990) A minor arginine tRNA mutant limits translation preferentially of a protein dependent on the cognate codon. Journal of bacteriology, 172(5), 2504-2510. DOI
  355. Hernan, R.A., Hui, H.L., Andracki, M.E., Noble, R.W., Sligar, S.G., Walder, J.A., Walder, R.Y. (1992) Human hemoglobin expression in Escherichia coli: importance of optimal codon usage. Biochemistry, 31(36), 8619-8628. DOI
  356. Ernst, J. F., Kawashima, E. (1988) Variations in codon usage are not correlated with heterologous gene expression in Saccharomyces cerevisiae and Escherichia coli. Journal of biotechnology, 7(1), 1-9. DOI
  357. Lee, H.W., Joo, J.H., Kang, S.S., Song, J.B., Kwon, M.H., Han, D.S., Na, D.S. (1992) Expression of human interleukin-2 from native and synthetic genes in E. coli: No correlation between major codon bias and high level expression. Biotechnology Letters, 14, 653-658. DOI
  358. Gustafsson, C., Govindarajan, S., Minshull, J. (2004) Codon bias and heterologous protein expression. Trends in biotechnology, 22(7), 346-353. DOI
  359. Komar, A.A. (2016). The art of gene redesign and recombinant protein production: approaches and perspectives. In proteint herapeutics. Topics in medicinal chemistry (Sauna, Z., Kimchi-Sarfaty, C. eds) Springer, Cham. 21 pp161-177. DOI
  360. Wu, G., Zheng, Y., Qureshi, I., Zin, H.T., Beck, T., Bulka, B., Freeland, S.J. (2006) SGDB: a database of synthetic genes re-designed for optimizing protein over-expression. Nucleic acids research, 35, D76-D79. DOI
  361. Einsfeldt, K., Baptista, I.C., Pereira, J.C., Costa-Amaral, I.C., Costa, E.S., Ribeiro, M.C., Land, M.G., Alves, T.L., Larentis, A.L., Almeida, R.V. (2016) Recombinant L-asparaginase from Zymomonas mobilis: A potential new antileukemic agent produced in Escherichia coli. PLoS One., 11(6), e0156692. DOI
  362. Kimchi-Sarfaty, C., Oh, J.M., Kim, I.W., Sauna, Z.E., Calcagno, A.M., Ambudkar, S.V., Gottesman, M.M. (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science, 315(5811), 525-528. DOI
  363. Komar, A.A. (2009) A pause for thought along the co-translational folding pathway. Trends in biochemical sciences, 34(1), 16-24. DOI
  364. Kim, S.J., Yoon, J.S., Shishido, H., Yang, Z., Rooney, L.A., Barral, J.M., Skach, W.R. (2015) Protein folding. Translational tuning optimizes nascent protein folding in cells. Science, 348(6233), 444-448. DOI
  365. Buhr, F., Jha, S., Thommen, M., Mittelstaet, J., Kutz, F., Schwalbe, H., Rodnina, M.V., Komar, A.A. (2016) Synonymous Codons Direct Cotranslational Folding toward Different Protein Conformations. Molecular cell, 61(3), 341- 351. DOI
  366. Goldman, E., Rosenberg, A.H., Zubay, G., Studier, F.W. (1995) Consecutive low-usage leucine codons block translation only when near the 5’ end of a message in Escherichia coli. Journal of molecular biology, 245(5), 467-473. DOI
  367. Bulmer, M. (1988) Codon usage and intragenic position. Journal of theoretical biology, 133(1), 67-71. DOI
  368. Chen, G.F., Inouye, T.M. (1990) Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic acids research, 18(6), 1465-1473. DOI
  369. Boer, H.A., Kastelein, R.A. (1986) Biased codon usage: an exploration of its role in optimization of translation. In Biotechnology Series. pp. 225-285.
  370. Eyre-Walker, A., Bulmer, M. (1993) Reduced synonymous substitution rate at the start of enterobacterial genes. Nucleic acids research, 21(19), 4599-4603. DOI
  371. Irwin, B., Heck, J.D., Hatfield, G.W. (1995) Codon pair utilization biases influence translational elongation step times. The Journal of biological chemistry, 270(39), 22801-22806. DOI
  372. Rosenberg, A.H., Goldman, E., Dunn, J.J., Studier, F.W., Zubay, G. (1993) Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system. Journal of bacteriology, 175(3), 716-722. DOI
  373. Saier, M.H. Jr. (1995) Differential codon usage: a safeguard against inappropriate expression of specialized genes? FEBS letters, 362(1), 1-4. DOI
  374. Mortazavi, M., Torkzadeh-Mahani, M., Kargar, F., Nezafat N., Younes G. (2019) In silico analysis of codon usage and rare codon clusters in the halophilic bacteria L-asparaginase. Biologia, 75(4), 151-160. DOI
  375. Hatfield, G.W., Hung, S.P., Baldi, P. (2003) Differential analysis of DNA microarray gene expression data. Molecular microbiology, 47(4), 871-877. DOI
  376. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., Pachter, L. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols, 7(3), 562-578. DOI
  377. Ghosh, D., Chinnaiyan, A.M. (2002) Mixture modelling of gene expression data from microarray experiments. Bioinformatics, 18(2), 275-886. DOI
  378. Kerr, M.K., Churchill, G.A. (2001) Statistical design and the analysis of gene expression microarray data. Genet Res. 77(2), 123-128. DOI
  379. Mollah, M.M., Jamal, R., Mokhtar, N.M., Harun, R., Mollah, M.N. (2015) A Hybrid one-way ANOVA approach for the robust and efficient estimation of differential gene expression with multiple patterns. PLoS one, 10(9), e0138810. DOI
  380. Tarazona, S., Furió-Tarí, P., Turrà, D., Pietro, A.D., Nueda, M.J., Ferrer, A., Conesa, A. (2015) Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic acids research, 43(21), e140. DOI
  381. Ross, J. (1995) mRNA stability in mammalian cells. Microbiological reviews, 59(3), 423-450. DOI
  382. Brenner, S., Jacob, F., Meselson, M. (1961) An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature, 190, 576-581. DOI
  383. Ehretsmann, C.P., Carpousis, A.J., Krisch, H.M. (1992) mRNA degradation in procaryotes. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 6(13), 3186-3192. DOI
  384. Mugridge, J.S., Coller, J., Gross, J.D. (2018) Structural and molecular mechanisms for the control of eukaryotic 5’-3’ mRNA decay. Nature structural & molecular biology, 25(12), 1077-1085. DOI
  385. Nierlich, D.P., Murakawa, G.J. (1996) The decay of bacterial messenger RNA. Progress in nucleic acid research and molecular biology, 52, 153-216. DOI
  386. Petersen, C. (1992) Control of functional mRNA stability in bacteria: multiple mechanisms of nucleolytic and non-nucleolytic inactivation. Molecular microbiology, 6(3), 277-282. DOI
  387. Donovan, W.P., Kushner, S.R. (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proceedings of the National Academy of Sciences of the United States of America, 83(1), 120-124. DOI
  388. Har-El, R., Silberstein, A., Kuhn, J., Tal, M. (1979) Synthesis and degradation of lac mRNA in E. coli depleted of 30S ribosomal subunits. Molecular & general genetics, 173(2), 135-144. DOI
  389. Merino, E., Becerril, B., Valle, F., Bolivar, F. (1987) Deletion of a repetitive extragenic palindromic (REP) sequence downstream from the structural gene of Escherichia coli glutamate dehydrogenase affects the stability of its mRNA. Gene, 58(2-3), 305-309. DOI
  390. Newbury, S.F., Smith, N.H., Robinson, E.C., Hiles, I.D., Higgins, C.F. (1987) Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell, 48(2), 297-310. DOI
  391. Chen, L.H., Emory, S.A., Bricker, A.L., Bouvet, P., Belasco, J.G. (1991) Structure and function of a bacterial mRNA stabilizer: analysis of the 5’ untranslated region of ompA mRNA. Journal of bacteriology, 173(15), 4578- 4586. DOI
  392. Emory, S.A., Belasco, J.G. (1990) The ompA 5’ untranslated RNA segment functions in Escherichia coli as a growth-rate-regulated mRNA stabilizer whose activity is unrelated to translational efficiency. Journal of bacteriology, 172(8), 4472-4481. DOI
  393. Alifano, P., Bruni, C.B., Carlomagno, M.S. (1994) Control of mRNA processing and decay in prokaryotes. Genetica, 94(2-3), 157-172. DOI
  394. Nilsson, G., Belasco, J.G., Cohen, S.N., von Gabain, A. (1984) Growth-rate dependent regulation of mRNA stability in Escherichia coli. Nature, 312(5989), 75-77. DOI
  395. Mohanty, B. K., Kushner, S. R. (2003). Genomic analysis in Escherichia coli demonstrates differential roles for polynucleotide phosphorylase and RNase II in mRNA abundance and decay. Molecular microbiology, 50(2), 645–658. DOI
  396. Fontes, A. M., Ito, J., Jacobs-Lorena, M. (1999). Control of messenger RNA stability during development. Current topics in developmental biology, 44, 171–202. DOI
  397. Duvoisin, R.M., Belin, D., Krisch, H.M. (1986) A plasmid expression vector that permits stabilization of both mRNAs and proteins encoded by the cloned genes. Gene, 45(2), 193-201. DOI
  398. Gorski, K., Roch, J.M., Prentki, P., Krisch, H.M. (1985) The stability of bacteriophage T4 gene 32 mRNA: a 5’ leader sequence that can stabilize mRNA transcripts. Cell, 43(2 Pt 1), 461-469. DOI
  399. Bandyra, K., Luisi, B. (2013). mRNA Degradation in Prokaryotes. In Encyclopedia of Biophysics.(Roberts, G.C.K. ed.) Springer, Berlin, Heidelberg. pp.1605-1611. DOI
  400. Wong, H.C., Chang, S. (1986) Identification of a positive retroregulator that stabilizes mRNAs in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 83(10), 3233-3237. OI: 10.1073/pnas.83.10.3233
  401. Belasco, J.G., Nilsson, G., von Gabain, A., Cohen, S.N. (1986) The stability of E. coli gene transcripts is dependent on determinants localized to specific mRNA segments. Cell, 46(2), 245-251. DOI
  402. Belasco, J.G., Higgins, C.F. (1988) Mechanisms of mRNA decay in bacteria: a perspective. Gene, 72(1-2), 15-23. DOI
  403. Chen, C.Y., Beatty, J.T., Cohen, S.N., Belasco, J.G. (1988) An intercistronic stem-loop structure functions as an mRNA decay terminator necessary but insufficient for puf mRNA stability. Cell, 52(4), 609-619. DOI
  404. Guarneros, G., Montañez, C., Hernandez, T., Court, D. (1982) Posttranscriptional control of bacteriophage lambda gene expression from a site distal to the gene. Proceedings of the National Academy of Sciences of the United States of America, 79(2), 238-242. DOI
  405. Higgins, C.F., Causton, H.C., Dance, G.S.C., Mudd, E.A. (1993) The role of the 3′ end in mRNA stability and decay. In Control of Messenger RNA Stability ( J. Belasco, G. Brawerman Eds.) Academic Press, San Diego, CA, pp. 13-30. DOI
  406. Carzaniga, T., Sbarufatti, G., Briani, F. Gianni Dehò G. (2017). Polynucleotide phosphorylase is implicated in homologous recombination and DNA repair in Escherichia coli . BMC Microbiol 17 (81). DOI
  407. Goldberg, A.L., Goff, S.A. (1986) The selective degradation of abnormal proteins in bacteria. In Maximizing gene expression (W.Reznikoff , L.Gold eds) Butterworths, Boston, pp 287-314.
  408. Gottesman, S. (1990) Minimizing proteolysis in Escherichia coli: genetic solutions. Methods in enzymology, 185, 119-129. DOI
  409. Miller, C. G. 1996. Protein degradation and proteolytic modification, In Escherichia coli and Salmonella: cellular and molecular biology.(F.C. Neidhardt, R. Curtiss III, J. L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter, H. E. Umbarger ed.), ASM Press, Washington, D.C. p. 938-954.
  410. Baneyx, F., Georgiou, G. (1992) Degradation of secreted proteins in Escherichia coli. Annals of the New York Academy of Sciences, 665, 301-308. DOI
  411. Kaufmann, A., Stierhof, Y.D., Henning, U. (1994) New outer membraneassociated protease of Escherichia coli K-12. Journal of bacteriology, 176(2), 359-367. DOI
  412. Keiler, K.C., Waller, P.R., Sauer, R.T. (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science, 271(5251), 990-993. DOI
  413. Baneyx, F., Georgiou, G. (1991) Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high-molecular-weight substrates in vivo. Journal of bacteriology, 173(8), 2696-2703. DOI
  414. Baneyx, F., G. Georgiou. 1992 Expression of proteolytically sensitive polypeptides in Escherichia coli, In stability of protein pharmaceuticals. A.chemical and physical pathways of protein degradation. (T.J. Ahern and M.C. Manning (ed.) Plenum Press, New York.pp. 69-108.
  415. Murby, M., Uhlén, M., Ståhl, S. (1996) Upstream strategies to minimize proteolytic degradation upon recombinant production in Escherichia coli. Protein expression and purification, 7(2), 129-136. DOI
  416. Bachmair, A., Finley, D., Varshavsky, A. (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science, 234(4773), 179-186. DOI
  417. Bachmair, A., Varshavsky, A. (1989) The degradation signal in a short-lived protein. Cell, 56(6), 1019-1032. DOI
  418. Gonda, D.K., Bachmair, A., Wünning, I., Tobias, J.W., Lane, W.S., Varshavsky, A. (1989) Universality and structure of the N-end rule. The Journal of biological chemistry, 264(28), 16700-16712. DOI
  419. Tobias, J.W., Shrader, T.E., Rocap, G., Varshavsky, A. (1991) The N-end rule in bacteria. Science, 254(5036), 1374-1337. DOI
  420. Varshavsky, A. (1992) The N-end rule. Cell, 69(5), 725-735. DOI
  421. Rogers, S., Wells, R., Rechsteiner, M. (1990) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science, 234(4774), 364-368. DOI
  422. Murby, M., Samuelsson, E., Nguyen, T.N., Mignard, L., Power, U., Binz, H., Uhlén, M., Ståhl, S. (1995) Hydrophobicity engineering to increase solubility and stability of a recombinant protein from respiratory syncytial virus. European journal of biochemistry, 230(1), 38-44. DOI
  423. Hammarberg, B., Nygren, P.A., Holmgren, E., Elmblad, A., Tally, M., Hellman, U., Moks, T., Uhlén, M. (1989) Dual affinity fusion approach and its use to express recombinant human insulin-like growth factor II. Proceedings of the national academy of sciences of the united states of america, 86(12), 4367- 4371. DOI
  424. Hellebust, H., Murby, M., Abrahmsén, L, Uhle´n M., Enfors S.-O. (1989) Different approaches to stabilize a recombinant fusion protein. Nature biotechnology, 7, 165-168. DOI
  425. Carter, P. (1990) Site-specific proteolysis of fusion proteins. In: Protein Purification: From Molecular Mechanism to Large-Scale Processes. (R. Ladisch, R.C. Willson, C.C. Painton, S.E. Builder (Eds.). Symposium Series, 427, American Chemical Society, Washington, D.C. pp. 181-193.
  426. Forsberg, G., Baastrup, B., Rondahl, H., Holmgren, E., Pohl, G., Hartmanis, M., Lake, M. (1992) An evaluation of different enzymatic cleavage methods for recombinant fusion proteins, applied on des(1-3)insulin-like growth factor I. Journal of protein chemistry, 11(2), 201-211. DOI
  427. Nilsson, B., Forsberg, G., Moks, T., Hartmanis, M., Uhlén, M. (1992). Fusion proteins in biotechnology and structural biology. Current Opinion in Structural Biology, 2(4), 569-575. DOI
  428. Nygren, P.A., Ståhl, S., Uhlén, M. (1994) Engineering proteins to facilitate bioprocessing. Trends in biotechnology, 12(5), 184-188. DOI
  429. Uhlén, M., Moks, T. (1990) Gene fusions for purpose of expression: an introduction. Methods in enzymology, 185, 129-143. DOI
  430. Shen, S.H. (1984) Multiple joined genes prevent product degradation in Escherichia coli. Proceedings of the national academy of sciences of the United States of America, 81(15), 4627-4631. DOI
  431. Bowie, J.U., Sauer, R.T. (1989) Identification of C-terminal extensions that protect proteins from intracellular proteolysis.The Journal of biological chemistry, 264(13), 7596-7602
  432. Koken, M.H., Odijk, H.H., van Duin, M., Fornerod, M., Hoeijmakers, J.H. (1993) Augmentation of protein production by a combination of the T7 RNA polymerase system and ubiquitin fusion: overproduction of the human DNA repair protein, ERCC1, as a ubiquitin fusion protein in Escherichia coli. Biochemical and biophysical research communications, 195(2), 643-653. DOI
  433. Blondel, A., Nageotte, R., Bedouelle, H. (1996) Destabilizing interactions between the partners of a bifunctional fusion protein. Protein engineering, 9(2), 2312-2318. DOI
  434. Patel, N., Krishnan, S., Offman, M.N., Krol, M., Moss, C.X., Leighton, C., van Delft, F.W., Holland, M., Liu, J., Alexander, S., Dempsey, С., Ariffin, H., Essink, M., Eden, T.O.B., Watts, C., Bates, P.A., Saha, V.(2009) A dyad of lymphoblastic lysosomal cysteine proteases degrades the antileukemic drug L-asparaginase. Journal of Clinical. Investigation, 119 (7), 1964–1973. DOI
  435. Obukowicz, M.G., Staten, N.R., Krivi, G.G. (1992) Enhanced heterologous gene expression in novel rpoH mutants of Escherichia coli. Applied and environmental microbiology, 58(5), 1511-1523. DOI
  436. Goldberg, A.L., Goff S.A., Casson L.P. (1988). Hosts and methods for producing recombinant products in high yields.WIPO (PCT) U.S. WO1985003949A1
  437. Meerman, H.J., Georgiou, G. (1994) High-level production of proteolytically sensitive secreted proteins in Escherichia coli strains impaired in the heat-shock response. Annals of the New York Academy of Sciences, 21, 292-302. DOI
  438. Spiess, C., Beil, A., Ehrmann, M. (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell, 97(3), 339-347. DOI
  439. Rizzitello, A.E, Harper, J.R., Silhavy, T.J. (2001) Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli. Journal of bacteriology, 183(23), 6794-6800. DOI
  440. Safder, I., Khan, S., Islam, I., Ali MK, Bibi Z, Waqas M. (2018) Pichia pastoris Expression system: A potential candidate to express protein inindustrial and biopharmaceutical domains. Biomedical letters, 4(1), 1-14, DOI
  441. Hamed, M.B., Anné, J., Karamanou, S., Economou, A. (2018). Streptomyces protein secretion and its application in biotechnology. FEMS microbiology letters, 365(22), fny250. DOI
  442. Radha, R., Arumugam, N., Gummadi, S.N. (2018) Glutaminase free L-asparaginase from Vibrio cholerae: Heterologous expression, purification and biochemical characterization. International journal of biological macromolecules, 111, 129-138. DOI
  443. Coleman, R.J., Bruck, T. ( 2020) Method for production of recombinant erwinia asparaginase. US Patent No: 10,787,671 B2 Sep. 29
  444. Simon, L.D., Randolph, B., Irwin, N., Binkowski, G. (1983) Stabilization of proteins by a bacteriophage T4 gene cloned in Escherichia coli. Proceedings of the national academy of sciences of the united states of america, 80(7), 2059- 2062. DOI
  445. Singer, B.S., Gold, L. (1991) Phage T4 expression vector: protection from proteolysis. Gene, 106(1), 1-6. DOI
  446. Lee, S.Y. (1996) High cell-density culture of Escherichia coli. Trends in biotechnology, 14(3), 98-105. DOI
  447. Swamy, K.H., Goldberg, A.L. (1982) Subcellular distribution of various proteases in Escherichia coli. Journal of bacteriology, 149(3), 1027-1033. DOI
  448. Talmadge, K., Gilbert, W. (1982) Cellular location affects protein stability in Escherichia coli. Proceedings of the national academy of sciences of the united states of America, 79(6), 1830-1833. DOI
  449. Fahey, R.C., Hunt, J.S., Windham, G.C. (1977) On the cysteine and cystine content of proteins. Differences between intracellular and extracellular proteins. Journal of molecular evolution, 10(2), 155-160. DOI
  450. Hwang, C., Sinskey, A.J., Lodish, H.F. (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science, 257(5076), 1496-1502. DOI
  451. Bardwell, J.C. (1994) Building bridges: disulphide bond formation in the cell. Molecular microbiology, 14(2), 199-205. DOI
  452. Bardwell, J.C., McGovern, K., Beckwith, J. (1991) Identification of a protein required for disulfide bond formation in vivo. Cell, 67(3), 581-589. DOI
  453. Guilhot, C., Jander, G., Martin, N.L., Beckwith, J. (1995) Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Proceedings of the National Academy of Sciences of the United States of America, 92(21), 9895-9899. DOI
  454. Pugsley, A.P. (1993) The complete general secretory pathway in gramnegative bacteria. Microbiological reviews, 57(1), 50-108. DOI
  455. Stader, J.A., Silhavy, T.J. (1990) Engineering Escherichia coli to secrete heterologous gene products. Methods in enzymology, 185, 166-187. DOI
  456. Petrovskaia, L.E., Ruzin, A.V., Shingarova, L.N., Korobko, V.G. (1995) Design of recombinant Escherichia coli strains, determining the secretory expression of artificial human granulocyte-macrophage colony-stimulating factor genes. Bioorganicheskaia khimiia, 21(11), 845-854.
  457. Georgiou, G., Segatori, L. (2005) Preparative expression of secreted proteins in bacteria: status report and future prospects. Current opinion in biotechnology, 16(5), 538-545. DOI
  458. Hodgson, J. (1993) Expression systems: a user’s guide. Emphasis has shifted from the vector construct to the host organism. Biotechnology (N Y), 11(8), 887-893. DOI
  459. Blight, M.A., Chervaux, C., Holland, I.B. (1994) Protein secretion pathway in Escherichia coli. Current opinion in biotechnology, 5(5), 468-474. DOI
  460. Saier, M.H. Jr, Werner. P.K., Müller, M. (1989) Insertion of proteins into bacterial membranes: mechanism, characteristics, and comparisons with the eucaryotic process. Microbiological reviews, 53(3), 333-366. DOI
  461. Pérez-Pérez, J., Márquez, G., Barbero, J.L, Gutiérrez, J. (1994) Increasing the efficiency of protein export in Escherichia coli. Biotechnology (N Y), 12(2), 178-180. DOI
  462. Schatz, P.J., Beckwith, J. (1990) Genetic analysis of protein export in Escherichia coli. Annual review of genetics, 24, 215-248. DOI
  463. Schatz, G., Dobberstein, B. (1996) Common principles of protein translocation across membranes. Science, 271(5255), 1519-1526. DOI
  464. von Heijne, G. (1990) The signal peptide. The Journal of membrane biology, 115(3), 195-201. DOI
  465. Kern, I., Cegłowski, P. (1995) Secretion of streptokinase fusion proteins from Escherichia coli cells through the hemolysin transporter. Gene, 163(1), 53-57. DOI
  466. Hoffman, C.S., Wright, A. (1985) Fusions of secreted proteins to alkaline phosphatase: an approach for studying protein secretion. Proceedings of the National Academy of Sciences of the United States of America, 82(15), 5107- 5111. DOI
  467. Kadonaga, J.T., Gautier, A.E., Straus, D.R., Charles, A.D., Edge, M.D., Knowles, J.R. (1984) The role of the beta-lactamase signal sequence in the secretion of proteins by Escherichia coli. The Journal of biological chemistry, 259(4), 2149-2154. DOI
  468. Morioka-Fujimoto, K., Marumoto, R., Fukuda, T. (1991) Modified enterotoxin signal sequences increase secretion level of the recombinant human epidermal growth factor in Escherichia coli.The Journal of biological chemistry, 266(3), 1728-1732
  469. Abrahmsén, L., Moks, T., Nilsson, B., Uhlén, M. (1986) Secretion of heterologous gene products to the culture medium of Escherichia coli. Nucleic acids research, 14(18), 7487-7500. DOI
  470. Lo, A.C., MacKay, R.M., Seligy, V.L., Willick, G.E. (1988) Bacillus subtilis beta-1,4-endoglucanase products from intact and truncated genes are secreted into the extracellular medium by Escherichia coli. Applied and environmental microbiology, 54(9), 2287-2292. DOI
  471. Le Calvez, H., Green, J.M., Baty, D. (1996) Increased efficiency of alkaline phosphatase production levels in Escherichia coli using a degenerate PelB signal sequence. Gene, 170(1), 51-55. DOI
  472. Schein, C.H., Boix, E., Haugg, M., Holliger, K.P., Hemmi, S., Frank, G., Schwalbe, H. (1992) Secretion of mammalian ribonucleases from Escherichia coli using the signal sequence of murine spleen ribonuclease. The Biochemical journal, 283 ( Pt 1), 137-144. DOI
  473. Yari, M., Ghoshoon, M.B., Nezafat, N., Younes, G. (2020) Experimental evaluation of in silico selected signal peptides for secretory expression of Erwinia asparaginase in Escherichia coli. International journal of peptide research and therapeutics, 26, 1583-1591. DOI
  474. Chan, W.K., Lorenzi, P.L., Anishkin, A., Purwaha, P., Rogers, D.M., Sukharev, S., Rempe, S.B., Weinstein, J.N. (2014) The glutaminase activity of L-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood, 123(23), 3596-3606. DOI
  475. Obukowicz, M.G., Turner, M.A., Wong, E.Y., Tacon, W.C. (1988) Secretion and export of IGF-1 in Escherichia coli strain JM101. Molecular & general genetics, 215(1), 19-25. DOI
  476. Hsiung, H., Cantrell, A., Luirink, J. B. Oudega, B., Veros, A. J., Becker,G. W. (1989) Use of bacteriocin release protein in E. Coli for excretion of human growth hormone into the culture medium. Nature biotechnology, 7, 267-271. DOI
  477. Aristidou, A.A., Yu, P., San, K.Y. (1993) Effects of glycine supplement on protein production and release in recombinant Escherichia coli. Biotechnology Letters, 15, 331-336. DOI
  478. Kobayashi, T., Kato, C., Kudo, T., Horikoshi, K. (1986) Excretion of the penicillinase of an alkalophilic Bacillus sp. through the Escherichia coli outer membrane is caused by insertional activation of the kil gene in plasmid pMB9. Journal of bacteriology, 166(3), 728-732. DOI
  479. Yu, P., Aristidou, A.A., San, K.Y. (1991) Synergistic effect of glycine and bacteriocin release protein in the release of periplasmic protein in recombinant E. coli. Biotechnology Letters ,13, 311-316 (1991). DOI
  480. Tsolis, K.C., Hamed, M.B., Simoens, K., Koepff, J., Busche, T., Rückert, C., Oldiges, M., Kalinowski, J., Anné, J., Kormanec, J., Bernaerts, K., Karamanou, S., Economou, A. (2019) Secretome dynamics in a gram-positive bacterial model. Molecular & cellular proteomics, 18(3), 423-436. DOI
  481. Gwynne, D., Buxton, F., Williams, S., Garven S., Wayne Davies R. (1987) Genetically engineered secretion of active human interferon and a bacterial endoglucanase from Aspergillus Nidulans. Nature biotechnology, 5, 713-719. DOI
  482. Freitas, M., Souza, P., Homem-de-Mello, M., Fonseca-Bazzo, Y.M., Silveira, D., Ferreira Filho E.X., Pessoa Junior, A., Sarker, D., Timson, D., Inácio, J., Magalhães, P.O. (2022) L-asparaginase from Penicillium sizovae produced by a recombinant Komagataella phaffii strain. Pharmaceuticals, 15(6), 746-763. DOI
  483. Schwarzhans, J. P., Luttermann, T., Geier, M., Kalinowski, J., Friehs, K. (2017). Towards systems metabolic engineering in Pichia pastoris. Biotechnology advances, 35(6), 681-710. DOI
  484. Hitzeman, R.A., Leung, D.W., Perry, L.J., Kohr, W.J., Levine, H.L., Goeddel, D.V. (1983) Secretion of human interferons by yeast. Science, 219(4585), 620-625. DOI
  485. Yang, Z., Zhang, Z. (2018) Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Biotechnology advances, 36(1), 182-195. DOI
  486. Biasoto, H.P., Hebeda, C.B., Farsky, S.H.P., Pessoa, A., Costa-Silva, T.A., Monteiro, G. (2023) Extracellular expression of Saccharomyces cerevisiae’s L-asparaginase II in Pichia pastoris results in novel enzyme with better parameters. Preparative biochemistry & biotechnology, 53(5), 511-522. DOI
  487. Feng, Y., Liu, S., Jiao, Y., Wang, Y., Wang, M., Du, G. (2019) Gene cloning and expression of the L-asparaginase from Bacillus cereus BDRD-ST26 in Bacillus subtilis WB600. Journal of bioscience and bioengineering, 127(4), 418- 424. DOI
  488. Kim, S.K., Min, W.K., Park, Y.C., Seo, J.H. (2015) Application of repeated aspartate tags to improving extracellular production of Escherichia coli L-asparaginase isozyme II. Enzyme and microbial technology, 79-80, 49-54. DOI
  489. Caetano, L. F. (2020). Production and characterization of mutants of lower immunogenic potential of L-asparaginase II from Escherichia coli: Combination of in silico and in vitro studies, in postgraduate program in pharmacology. Universidade Federal Do Ceará: Available at: https://repositorio. ufc.br/handle/riufc/55993
  490. Butt, T.R., Jonnalagadda, S., Monia, B.P., Sternberg, E.J., Marsh, J.A., Stadel, J.M., Ecker, D.J., Crooke, S.T. ( 1989) Ubiquitin fusion augments the yield of cloned gene products in Escherichia coli. Proceedings of the national academy of sciences of the United States of America, 86(8), 2540-2544. DOI
  491. Baker, R.T., Smith, S.A., Marano, R., McKee, J., Board, P.G. (1994) Protein expression using cotranslational fusion and cleavage of ubiquitin. Mutagenesis of the glutathione-binding site of human Pi class glutathione S-transferase.The Journal of biological chemistry, 269(41), 25381-25386. DOI
  492. Paraskevopoulou, V., Falcone, F.H. (2018) Polyionic tags as enhancers of protein solubility in recombinant potein expression. Microorganisms, 6(2), 47. DOI
  493. LaVallie, E.R., McCoy, J.M. (1995) Gene fusion expression systems in Escherichia coli. Current opinion in biotechnology, 6(5), 501-506. DOI
  494. Uhlén, M., Forsberg, G., Moks, T., Hartmanis, M., Nilsson, B. (1992) Fusion proteins in biotechnology. Current opinion in biotechnology, 3(4), 363- 369. DOI
  495. Wall, J.G., Plückthun, A. (1995) Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli. Current opinion in biotechnology, 6(5), 507-516. DOI
  496. LaVallie, E.R., DiBlasio, E.A., Kovacic, S., Grant, K.L., Schendel, P.F., McCoy, J.M. (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y), 11(2), 187-193. DOI
  497. Van Trimpont, M., Schalk, A.M., De Visser, Y., Nguyen, H.A., Reunes, L., Vandemeulebroecke, K., Peeters, E., Su, Y., Lee, H., Lorenzi, P.L., Chan, W.K., Mondelaers, V., De Moerloose, B., Lammens, T., Goossens, S., Van Vlierberghe, P., Lavie, A. (2023) In vivo stabilization of a less toxic asparaginase variant leads to a durable antitumor response in acute leukemia. Haematologica, 108(2), 409-419. DOI
  498. Ryu, J., Yang, S.J., Son, B., Lee, H., Lee, J., Joo, J., Park, H.H., Park, T.H. (2022) Enhanced anti-cancer effect using MMP-responsive L-asparaginase fused with cell-penetrating 30Kc19 protein. Artificial cells, nanomedicine, and biotechnology, 50(1), 278-285. DOI
  499. Guo, L., Wang, J., Qian, S., Yan, X., Chen, R., Meng, G. (2000) Construction and structural modeling of a single-chain Fv-asparaginase fusion protein resistant to proteolysis. Biotechnology and bioengineering, 70(4), 456-463. DOI
  500. Butt, T.R., Edavettal, S.C., Hall, J.P., Mattern, M.R. (2005) SUMO fusion technology for difficult-to-express proteins. Protein expression and purification, 43(1), 1-9. DOI
  501. Komolov А., Sannikova, E., Gorbunov, A., Gubaidullin, I., Plokhikh, K., Konstantinova, G., Bulushova, N., Kuchin, S., Kozlov, D. (2023) Synthesis of biologically active proteins as L6KD‐SUMO fusions forming inclusion bodies in Escherichia coli. Biotechnology and Bioengineering.121(2), 535-550. DOI
  502. Harper, S., Speicher, D.W. (2011) Purification of proteins fused to glutathione S-transferase. Methods in molecular biology, 681, 259-280. DOI
  503. Dieterich, D.C., Landwehr, M., Reissner, C., Smalla, K.H., Richter, K., Wolf, G., Böckers, T.M., Gundelfinger, E.D., Kreutz, M.R. (2003) Gliap--a novel untypical L-asparaginase localized to rat brain astrocytes. Journal of neurochemistry, 85(5), 1117-1125. DOI
  504. Costa, S.J., Almeida, A., Castro, A., Domingues, L., Besir, H. (2013) The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli: a comparison with the traditional gene fusion technology. Applied microbiology and biotechnology, 97(15), 6779-6791. DOI
  505. Naderi, M., Ghaderi, R., Khezri, J., Karkhane, A., Bambai, B. (2022) Crucial role of non-hydrophobic residues in H-region signal peptide on secretory production of L-asparaginase II in Escherichia coli. Biochemical and biophysical research communications, 636, 105-111. DOI
  506. Buchner, J. (1996) Supervising the fold: functional principles of molecular chaperones. FASEB journal : official publication of the federation of american societies for experimental biology, 10(1), 10-19. DOI
  507. Clarke, A.R. (1996) Molecular chaperones in protein folding and translocation. Current opinion in structural biology, 6(1), 43-50. DOI
  508. Ellis, R.J., Hartl, F.U. (1996) Protein folding in the cell: competing models of chaperonin function. FASEB journal: official publication of the Federation of american societies for experimental biology, 10(1), 20-26. DOI
  509. Gilbert, H.F. (1994) Protein chaperones and protein folding. Current opinion in biotechnology, 5(5), 534-539. DOI
  510. Martin, J., Hartl, F.U. (1994) Molecular chaperones in cellular protein folding. BioEssays : news and reviews in molecular, cellular and developmental biology, 16(9), 689-692. DOI
  511. Balchin, D., Hayer-Hartl, M., Hartl, F.U. (2020) Recent advances in understanding catalysis of protein folding by molecular chaperones. FEBS letters, 594(17), 2770-2781. DOI
  512. Fatima, K., Naqvi, F., Younas, H. ( 2021) A Review: Molecular Chaperonemediated folding, unfolding and disaggregation of expressed recombinant proteins. Cell biochemistry and biophysics, 79(2), 153-174. DOI
  513. Goloubinoff, P., Gatenby, A.A., Lorimer, G.H. (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature, 337(6202), 44-47. DOI
  514. Hockney, R.C. (1994) Recent developments in heterologous protein production in Escherichia coli. Trends in biotechnology, 12(11), 456-463. DOI
  515. Lee, S.C., Olins, P.O. (1992) Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli. The Journal of biological chemistry, 267(5), 2849-2852. DOI
  516. Goliloo, E. B., Tollabi, M., Jaliani, H. Z. (2021) Soluble expression and purification of Q59L mutant L-asparaginase in the presence of chaperones in SHuffle™ T7 strain. International journal of medical laboratory, 8(2), 6278. DOI
  517. Lobstein, J., Emrich, C.A., Jeans, C., Faulkner, M., Riggs, P., Berkmen, M. (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 11, 753. DOI
  518. Utami, D.F., Azizah, M.I., Sriwidodo, S., Haryanto, R.A., Pratiwi, R.D., Maksum, I. (2023) Review Article: Effect of co-expression chaperones on the expression of intracellular recombinant proteins in Escherichia coli. Chimica et natura acta, 11(2), 25-33. 10.24198/cna.v11.n2.46480
  519. Caspers, P., Stieger, M., Burn, P. (1994) Overproduction of bacterial chaperones improves the solubility of recombinant protein tyrosine kinases in Escherichia coli. Cellular and molecular biology (Noisy-le-grand), 40(5), 635-644.
  520. Blum, P., Ory, J., Bauernfeind, J., Krska, J. (1992) Physiological consequences of DnaK and DnaJ overproduction in Escherichia coli. Journal of bacteriology, 174(22), 7436-7444. DOI
  521. Sato, K., Sato, M.H., Yamaguchi, A., Yoshida, M. (1994) Tetracycline/ H+ antiporter was degraded rapidly in Escherichia coli cells when truncated at last transmembrane helix and this degradation was protected by overproduced GroEL/ES. Biochemical and biophysical research communications, 202(1), 258-264. DOI
  522. Langer, T., Lu, C., Echols, H., Flanagan, J., Hayer, M.K., Hartl, F.U. (1992) Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature, 356(6371), 683-689. DOI
  523. Seyed Hosseini, Fin. N.A., Barshan-Tashnizi, M., Sajjadi, S.M., Asgari, S., Mohajerani, N., Mirzahoseini, H. (2019) The effects of overexpression of cytoplasmic chaperones on secretory production of hirudin-PA in E. coli. Protein expression and purification, 157, 42-49. DOI
  524. Humphreys, D.P., Weir, N., Mountain, A., Lund, P.A. (1995) Human protein disulfide isomerase functionally complements a dsbA mutation and enhances the yield of pectate lyase C in Escherichia coli. The Journal of biological chemistry, 270(47), 28210-28215. DOI
  525. Ostermeier, M., De Sutter, K., Georgiou, G. (1996) Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yield of a heterologous secreted protein with disulfide bonds. The Journal of biological chemistry, 271(18), 10616-10622. DOI
  526. Cole, P.A. (1996) Chaperone-assisted protein expression. Structure, 4(3), 239-242. DOI
  527. Yasukawa, T., Kanei-Ishii, C., Maekawa, T., Fujimoto, J., Yamamoto, T., Ishii, S. (1995) Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. The Journal of biological chemistry, 270(43), 25328-25331. DOI
  528. Jena, R., Garg, D.K., Choudhury, L., Saini, A., Kundu, B. (2018) Heterologous expression of an engineered protein domain acts as chaperone and enhances thermotolerance of Escherichia coli. International journal of biological macromolecules, 107(Pt B), 2086-2093. DOI
  529. Wang, Z., Zhang, M., Lv, X., Fan, J., Zhang, J., Sun, J., Shen, Y. (2018) GroEL/ES mediated the in vivo recovery of TRAIL inclusion bodies in Escherichia coli. Scientific reports, 8(1), 15766. DOI
  530. Rudolph, R., Lilie, H. (1996) In vitro folding of inclusion body proteins. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 10(1), 49-56. DOI
  531. Schein, C.H. (1991) Optimizing protein folding to the native state in bacteria. Current opinion in biotechnology, 2(5), 746-750. DOI
  532. Schein, C.H. (1993) Solubility and secretability. Current opinion in biotechnology, 4(4), 456-461. DOI
  533. Ki, M.R., Pack, S.P. (2020) Fusion tags to enhance heterologous protein expression. Applied microbiology and biotechnology, 104(6), 2411-2425. DOI
  534. Proba, K., Ge, L., Plückthun, A. (1995) Functional antibody single-chain fragments from the cytoplasm of Escherichia coli: influence of thioredoxin reductase (TrxB). Gene, 159(2), 203-207. DOI
  535. Sørensen, H.P., Mortensen, K.K. (2005) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 4(1), 1. DOI
  536. Dale, G.E., Broger, C., Langen, H., D’Arcy, A., Stüber, D. (1994) Improving protein solubility through rationally designed amino acid replacements: solubilization of the trimethoprim-resistant type S1 dihydrofolate reductase. Protein engineering, 7(7), 933-939. DOI
  537. Rinas, U., Tsai, L.B., Lyons, D., Fox, G.M., Stearns, G., Fieschko, J., Fenton, D., Bailey, J.E. (1992) Cysteine to serine substitutions in basic fibroblast growth factor: effect on inclusion body formation and proteolytic susceptibility during in vitro refolding. Biotechnology (N Y), 10(4), 435-440. DOI
  538. Amrein, K.E., Takacs, B., Stieger, M., Molnos, J., Flint, N.A., Burn, P. (1995) Purification and characterization of recombinant human p50csk proteintyrosine kinase from an Escherichia coli expression system overproducing the bacterial chaperones GroES and GroEL. Proceedings of the National Academy of Sciences of the United States of America, 92(4), 1048-1052. DOI
  539. Cabilly, S. (1989) Growth at sub-optimal temperatures allows the production of functional, antigen-binding Fab fragments in Escherichia coli. Gene, 85(2), 553-557. DOI
  540. Shirano, Y., Shibata, D. (1990) Low temperature cultivation of Escherichia coli carrying a rice lipoxygenase L-2 cDNA produces a soluble and active enzyme at a high level. FEBS letters, 271(1-2), 128-130. DOI
  541. Blackwell, J.R., Horgan, R. (1991) A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS letters, 295(1-3), 10-12. DOI
  542. Bowden, G. A., Georgiou, G. (1988). The effect of sugars on β‐lactamase aggregation in Escherichia coli. Biotechnology progress, 4(2), 97-101. DOI
  543. Sugimoto, S., Yokoo, Y., Hatakeyama, N., Yotsuji, A., Teshiba, S., Hagino. H. (1991) Higher culture pH is preferable for inclusion body formation of recombinant salmon growth hormone in Escherichia coli. Biotechnology Letters, 13, 385-388. DOI
  544. Umetsu, M., Tsumoto, K., Ashish, K., Nitta, S., Tanaka, Y., Adschiri, T., Kumagai, I. (2004) Structural characteristics and refolding of in vivo aggregated hyperthermophilic archaeon proteins. FEBS letters, 557(1-3), 49-56. DOI
  545. Ventura, S., Villaverde, A. (2006). Protein quality in bacterila inclusion bodies. Trends in biotechnology, 24(4), 179-185. DOI
  546. Peternel, S., Komel, R. (2010). Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells. Microbial Cell Factories, 9(1), 66. DOI
  547. Peternel, S., Komel, R. (2011) Active protein aggregates produced in Escherichia coli. International Journal of Molecular Sciences, 12(11), 8275- 8287. DOI
  548. Vallejo, L.F., Rinas, U. (2004) Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microbial Cell Factories, 3(1), 11. DOI
  549. Kante, R.K., Vemula, S., Somavarapu, S., Mallu, M.R., Boje Gowd, B.H., Ronda. S.R. (2018) Optimized upstream and downstream process conditions for the improved production of recombinant human asparaginase (rhASP) from Escherichia coli and its characterization. Biologicals, 56, 45-53. DOI
  550. Singhvi, P., Verma, J., Panwar, N., Wani, T.Q., Singh, A., Qudratullah, M., Chakraborty, A., Saneja, A., Sarkar, D.P., Panda, A.K. (2021) Molecular attributes associated with refolding of inclusion body proteins using the freezethaw method. Frontiers in Microbiology, 12, 618559. DOI
  551. Rajendran, V., Pushpavanam, S., Jayaraman, G. (2022) Continuous refolding of L-asparaginase inclusion bodies using periodic counter-current chromatography. Journal of Chromatography A., 1662(901), 462746. DOI
  552. Clark, E.D. (2001) Protein refolding for industrial processes. Current opinion in biotechnology, 12(2), 202-207. DOI
  553. Singh, A., Upadhyay, V., Upadhyay, A.K., Singh, S.M., Panda, A.K. (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microbial Cell Factories, 14(1), 41. DOI
  554. Singh, A., Upadhyay, V., Singh, A., Panda, A.K. (2022) Structurefunction relationship of inclusion bodies of a multimeric protein. Frontiers of Microbiology. 8(11),876. DOI
  555. Yuan, T. Z., Ormonde, C., Kudlacek, S.T., Kunche, S., Smith, J.N., Brown, W.A., Pugliese, K.M., Olsen, T., Iftikhar, M., Raston, C., Weiss, G.A. (2015). Shear-stress-mediated refolding of proteins from aggregates and inclusion bodies. Chembiochem : a European journal of chemical biology, 16 (3), 393- 396. DOI
  556. Mukhopadhyay, A. (1997) Inclusion bodies and purification of proteins in biologically active forms. Advances in biochemical engineering/biotechnology, 56, 61-109. DOI
  557. Burgess, R.R. (2009) Refolding solubilized inclusion body proteins. Methods in enzymology, 463, 259-282. DOI
  558. Ford, C.F., Suominen, I., Glatz, C.E. (1991) Fusion tails for the recovery and purification of recombinant proteins. Protein expression and purification, 2(2-3), 95-107. DOI
  559. Yamanè, T., Shimizu, S. (2006). Fed-batch techniques in microbial processes. Advances in biochemical engineering/biotechnology, 30, 147-194. DOI
  560. Baeshen, M. N., Al-Hejin, A. M., Bora, R. S., Ahmed, M. M., Ramadan, H. A., Saini, K. S., Baeshen, N. A., Redwan, E. M. (2015). Production of biopharmaceuticals in E. coli: Current scenario and future perspectives. Journal of microbiology and biotechnology, 25(7), 953-962. DOI
  561. Yee, L, Blanch, H.W. (1992) Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Biotechnology (N Y), 10(12), 1550-1556. DOI
  562. Doriya, K., Jose, N., Gowda, M., Kumar, D.S. (2016) Solid-state fermentation vs submerged fermentation for the production of L-asparaginase. Advances in food and nutrition research, 78:115-135. DOI
  563. Luli, G.W., Strohl, W.R. (1990) Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Applied and environmental microbiology, 56(4), 1004-1011. DOI
  564. Aristidou, A.A., San, K.Y., Bennett, G.N. (1995) Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction. Biotechnology progress, 11(4), 475-478. DOI
  565. San, K.Y., Bennett, G.N., Aristidou, A.A., Chou, C.H. (1994) Strategies in high-level expression of recombinant protein in Escherichia coli. Annals of the New York academy of sciences, 721, 257-267. DOI
  566. Jacques, N., Guillerez, J., Dreyfus, M. (1992) Culture conditions differentially affect the translation of individual Escherichia coli mRNAs. Journal of molecular biology, 226(3), 597-608. DOI
  567. Hymavathi, M., Sathish, T., Subba Rao, Ch., Prakasham. R.S. (2009) Enhancement of L-asparaginase production by isolated Bacillus circulans (MTCC 8574) using response surface methodology. Applied biochemistry and biotechnology, 159(1), 191-198. DOI
  568. Mihooliya, K.N., Nandal. J., Kumari, A., Nanda, S., Verma, H., Sahoo, D.K. (2020) Studies on efficient production of a novel L-asparaginase by a newly isolated Pseudomonas resinovorans IGS-131 and its heterologous expression in Escherichia coli. 3 Biotechnology, 10(4), 148. DOI
  569. Kwon, S., Kim, S., Kim, E. (1996) Effects of glycerol of beta-lactamase production during high cell density cultivation of recombinant Escherichia coli. Biotechnology progress, 12(2), 205-208. DOI
  570. Barros, T., Brumano, L., Freitas, M., Pessoa, A., Junior, Parachin, N., Magalhães, P.O. (2020) Development of processes for recombinant L-asparaginase II production by Escherichia coli Bl21 (De3): from shaker to bioreactors. Pharmaceutics, 13(1), 14. DOI
  571. Ghoshoon, M.B., Berenjian, A., Hemmati, S., Dabbagh, F., Karimi, Z., Negahdaripour, M., Ghasemi, Y. (2015) Extracellular production of recombinant L-asparaginase II in Escherichia coli: medium optimization using response surface methodology. International journal of peptide research and therapeutics, 21(4), 487-495. DOI
  572. Ukkonen, K., Neubauer, A., Pereira, V.J., Vasala, A. (2017) High yield of recombinant protein in shaken E. coli cultures with enzymatic glucose release medium En Presso B. In heterologous gene expression in E.coli. Methods in molecular biology (Burgess-Brown, N. eds), Humana Press, New York, NY. 1586, 127-137. DOI
  573. Moorthy, V., Ramalingam, A., Alagarsamy, S., Shankaranaya, R. (2010) Production, purification and characterisation of extracellular L-asparaginase from a soil isolate of Bacillus sp. African journal of microbiology research bengaluru, 4(560), 1862-1867, http://www.academicjournals.org/ajmr
  574. Thirunavukkarasu N., Suryanarayanan N.S., Murali T.S., Ravishankar J.A.P., Gummadi, S. (2011) L-asparaginase from marine derived fungal endophytes of seaweeds. Mycosphere. 2(2), 147-155.
  575. Ariga, O., Andoh,Y., Fujishita,Y., Watari, T., Sano, Y. (1991) Production of thermophilic a-amylase using immobilized transformed Escherichia coli by addition of glycine. Journal of fermentation and bioengineering, 71(6), 397-402. DOI
  576. Ghosh, S., Murthy, S., Govindasamy, S., Chandrasekaran, M. (2013) Optimization of L-asparaginase production by Serratia marcescens (NCIM 2919) under solid state fermentation using coconut oil cake. Sustainable chemical processes, 1(1), 9. DOI
  577. Trang, T.H.N., Cuong, T.N., Thanh, S.L.N., Tuyen, T. D. (2016) Optimization, puriication and characterization of recombinant L-asparaginase II in Escherichia coli. African journal of biotechnology, 15(31), 1681-1691. DOI
  578. Borah, D., Yadav, R., Sangra, A., Shahin, L., Anand, A., Chaubey, K. (2012) Production, purification and process optimization of asparaginases (an anticancer enzyme) from E. coli, from sewage water. International journal of pharmacy and pharmaceutical sciences. 4(4), 560-563.
  579. Muharram, M., Abulhamd A., Salem-Bekhet, M. (2014) Recombinant expression, purification of L-asparaginase-II from thermotolerant E. Coli strain and evaluation of its antiproliferative activity. African journal of microbiology research, 8(15), 1610-1619. DOI
  580. Vidya, J., Vasudevan, U.M., Soccol, C., Pandey, A. (2011) Cloning,functional expression and characterization of L-asparaginase II from E. coli MTCC 739. Food technology and biotechnology. 49(3), 286-290. https:// hrcak.srce.hr/71053. Accessed 27 May 2024
  581. Baskar, G., Rajasekar,V.,Renganathan, S. (2011) Modeling and Optimization of L-asparaginase Production by Enterobacter Aerogenes Using Artificial Neural Network Linked Genetic Algorithm. International Journal of Chemical Engineering and Applications, 2(2), 98-100. DOI
  582. Goswami, R., Veeranki, V.D., Mishra, V.K. (2019) Optimization of process conditions and evaluation of pH & thermal stability of recombinant L-asparaginase II of Erwinia carotovora subsp. atroseptica SCRI 1043 in E. coli. Biocatalysis and agricultural biotechnology, 22(3), 101377. DOI
  583. Ebrahimi,V., Hashemi, A.( 2024) Optimizing recombinant production of L-asparaginase 1 from Saccharomyces cerevisiae using response surface methodology. Folia Microbiologica 69(6),1-15. DOI
  584. Çalık, P., Ata, O., Güneş, H., Massahi, A., Boy, E., Keskin, A., Oztürk, S., Zerze, G.H., Ozdamar, T.H. (2015) Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter:from carbon source metabolism to bioreactor operation parameters. Biochemical engineering journal, 95, 20-36. DOI
  585. Looser, V., Bruhlmann, B., Bumbak, F., Stenger, C., Costa, M., Camattari, A., Fotiadis, D., Kovar, K. (2015) Cultivation strategies to enhance productivity of Pichia pastoris: A review. Biotechnology advances, 33(6 Pt 2), 1177-1193. DOI
  586. Abribat, T. (2023) Pegylated L-asparaginase. United States: Carpmaels, Ransford LLP. Patent No. EP10730170.7
  587. Trieu, V. (2010). Albumin binding peptide-mediated disease targeting. CA: Ridout and Maybee LLP. Patent No. 2867252
  588. Lavie, A., Nguyen, H. (2017) L-asparaginase variants and FUSION proteins with reduced L-glutaminase activity and enhanced stability. WO. Patent No. US2017/020090
  589. Chahardahcherik, M., Ashrafi, M., Ghasemi, Y., Aminlari, M. (2020) Effect of chemical modification with carboxymethyl dextran on kinetic and structural properties of L-asparaginase. Analytical biochemistry, 591(6), 113537. DOI
  590. Qian, G., Zhou, J., Ma, J., Wang, D., He, B. (1996) The chemical modification of E. coli L-asparaginase by N,O-carboxymethyl chitosan. Artificial cells, blood substitutes, and immobilization biotechnology, 24(6), 567-577. DOI
  591. Sindhu, R., Pradeep, H., Manonmani, H.K. (2019) Polyethylene glycol acts as a mechanistic stabilizer of L-asparaginase: A computational probing. Medicinal chemistry (Shariqah (United Arab Emirates)), 15(6), 705-714. DOI
  592. Cerofolini, L., Giuntini, S., Carlon, A., Ravera, E., Calderone, V., Fragai, M., Parigi, G., Luchinat, C. (2019) Characterization of PEGylated asparaginase: new opportunities from NMR analysis of large PEGylated therapeutics. Chemistry, 25(8), 1984-1991. DOI
  593. Veronese, F.M., Pasut, G. (2005) PEGylation, successful approach to drug delivery. Drug discovery today,10(21), 1451-1458. DOI
  594. MacDonald, T., Kulkarni, K., Bernstein, M., Fernandez, C.V. (2016) Allergic reactions with intravenous compared with intramuscular pegaspargase in children with high-risk acute lymphoblastic leukemia: a population-based study from the maritimes, Canada. Journal of pediatric hematology/oncology, 38(5), 341-344. DOI
  595. Dobryakova, N.D., Kudryashova, E.V. (2023) Stabilization of Erwinia carotovora and Rhodospirillum rubrum L-asparaginases in complexes with polycations. Applied biochemistry and microbiology, 59(9), 1183-1191. DOI