Preparation of Electrochemical Biosensor Systems for the Analysis of Biological Objects: a Reasonable Choice of Modifications of the Working Surface of Electrodes for Performing Research in the "Smart Electrode" Mode

  • V.V. Shumyantseva Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia; Pirogov Russian National Research Medical University, 1 Ostrovitianov str., Moscow 117997, Russia
  • L.E. Agafonova Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • T.V. Bulko Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • A.V. Kuzikov Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia; Pirogov Russian National Research Medical University, 1 Ostrovitianov str., Moscow 117997, Russia
  • R.A. Masamrekh Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia; Pirogov Russian National Research Medical University, 1 Ostrovitianov str., Moscow 117997, Russia
Keywords: polymer composite materials, one-dimensional structures, biosensors; metal nanoparticles; carbon nanotubes; electroanalysis

Abstract

The electrochemical method of analysis of biological objects based on the reaction of electro-oxidation/electro-reduction of molecules is considered. Materials and complex systems for modifying electrodes as well as methods for producing modified electrodes to increase the sensitivity of recording the flow of electrochemical reactions on the surface of the electrodes are described. Methods of electrode modifications based on synthetic lipid-like didodecyldimethylammonium bromide, gold and silver nanoparticles, one-dimensional nanoparticles based on lead compounds, titan oxide nanoparticles, dispersions of carbon nanotubes in organic solvents, in polymers with different chemical structure are considered. It is shown that the appropriate functionalization of the working electrode surface makes it possible to increase the sensitivity of the electrochemical biosensor system and decrease the limit of detection. The results are presented in the form of an algorithm applicable for selection the beneficial type of modified electrode for the corresponding electrochemical reaction and biosample analysis.

References

  1. Akhtera, S., Basiruna, W., Aliasa, Y., Johanb, M., Bagherid, S., Shalauddinb, M., Ladane, M., Anuar, N. (2018) Enhanced amperometric detection of paracetamol by immobilized cobalt ion on functionalized MWCNTs - Chitosan thin film. Analytical Biochemistry, 551, 29–36. DOI

  2. Shaw, L., Dennany, L. (2017) Applications of electrochemical sensors: Forensic drug analysis. Current Opinion in Electrochemistry, 3, 23–28. DOI

  3. Lima, H., da Silva, J., de Oliveira Farias, E., Teixeira, P., Eiras, C., Nunes, L. (2018) Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosensors and Bioelectronics, 108, 27–37. DOI

  4. Rahi, A., Karimian, K., Heli, H. (2016) Nanostructured materials in electroanalysis of pharmaceuticals. Analytical Biochemistry, 497, 39-47. DOI

  5. Cernat, A., Tertis¸ M., Sandulescu, R. (2015) Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Analytica Chimica Acta, 886, 16-28. DOI

  6. Arduini, F., Micheli, L., Moscone, D., Palleschi, G., Piermarini, S., Francesco Ricci, F., Volpe, G. (2016) Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. Trends Anal. Chem., 79, 114-126. DOI

  7. Li, M., Li, D.-W., Xiu, G., Long, Y.-T. (2017) Applications of screen-printed electrodes in current environmental analysis. Curr. Opin. Electrochem., 3, 137-143. DOI

  8. Kuzikov, A.V., Bulko, T.V., Koroleva, P.I., Masamrekh, R.A., Babkina, S.S., Gilep, A.A., Shumyantseva, V.V. (2020) Cytochrome P450 3A4 as enzyme for drug biotransformation: the role of sensor systems modifications in electrocatalysis and electroanalysis. Biomeditsinskaya Khimiya, 66(1), 64-70. DOI

  9. Shumyantseva, V.V., Bulko, T.V., Misharin, A.Yu., Archakov, A.I. (2011) Screening of Potential Substrates or Inhibitors of Cytochrome P450 17A1 (CYP17A1) by Electrochemical Methods. Biomeditsinskaya Khimiya, 57(4), 402-409. DOI

  10. Shumyantseva, V.V., Bulko, T.V., Kuznetsova, G.P., Samenkova, N.F., and Archakov, A.I. (2009) Electrochemistry of cytochromes P450: Analysis of current-voltage characteristics of electrodes with immobilized cytochromes P450 for the screening of substrates and inhibitors. Biochemistry, 74, 438–444. DOI

  11. Sigolaeva, L.V., Bulko, T.V., Kozin, M.S., Zhang, W., Köhler, M., Romanenko, I., Yuan, J., Schacher, F.H., Pergushov, D.V., Shumyantseva, V.V. (2019) Long-term stable poly(ionic liquid)/MWCNTs inks enable enhanced surface modification for electrooxidative detection and quantification of dsDNA. Polymer, 168, 95–103. DOI

  12. Shumyantseva, V.V., Sigolaeva, L.V., Agafonova, L.E., Bulko, T.V., Pergushov, D.V., Schacher, F.H., Archakov, A.I. (2015) Facilitated biosensing via direct electron transfer of myoglobin integrated into diblock copolymer/multi-walled carbon nanotube nanocomposites. J. Mater. Chem. B, 3(27) 5467–5477. DOI

  13. Shumyantseva, V.V., Bulko, T.V., Kuzikov, A.V., Masamrekh, R.A., Pergushov, D.V., Schacher, F.H., Sigolaeva, L.V. (2020) Electrochemical fingerprint of cytochrome c on a MWCNT/polymer nanocomposite electrode. Mendeleev Communications, in press

  14. Shumkov, A. A., Suprun, E. V., Shatinina, S. Z., Lisitsa, A. V., Shumyantseva, V. V., Archakov, A. I. (2013) Gold and Silver Nanoparticles for Electrochemical Detection of Cardiac Troponin I based on Striping Voltammetry. BioNanoScience, 2(3), 216-222. DOI

  15. Shumyantseva, V.V., Bulko, T.V., Kuzikov, A.V., Masamrekh, R.A., Archakov, A.I. (2018) Analysis of L-tyrosine based on electrocatalytic oxidative reactions via screen-printed electrodes modified with multi-walled carbon nanotubes and nanosized titanium oxide (TiO2). Amino Acids., 50, 823-829. DOI

  16. Tong, H., Zhu, Y-J., Yang, L.X., Zhang, L. (2006) Lead Chalcogenide Nanotubes Synthesized by Biomolecule-Assisted Self-Assembly of Nanocrystals at Room Temperature. Angew. Chem. Int. Ed., 45, 7739-7742. DOI

  17. Shumyantseva, V. V., Bulko, T. V., Suprun, E. V. and Archakov, A. I. (2013) Electrochemical Sensor Systems Based on One_Dimensional (1D) Nanostructures for Analysis of Bioaffinity Interactions. Biomeditsinskaya Khimiya, 59(2), 209–218. DOI

  18. Guto, P.M., Rusling, J.F. (2006) Myoglobin retains iron heme and near-native conformation in DDAB films prepared from pH 5 to 7 dispersions. Electrochemistry Communications, 8, 455–459. DOI

  19. Shumyantseva, V.V., Suprun, E.V., Bulko, T.V., Dobrynina, O.V., Archakov, A.I. (2010) Sensor Systems for Medical Application Based on Hemoproteins and Nanocomposite Materials. Biomeditsinskaya Khimiya, 56 (1), 55–71. DOI

  20. Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Chalenko, Y.M., Vagin, M.Yu., Rudakov, Yu.O., Shatskaya, M.A., Archakov, A.I. (2011) Electrochemical investigations of cytochrome P450. Biochimica et Biophysica Acta - Proteins and Proteomics. 1814(1), 94–101. DOI

  21. Kuzikov, A.V., Dugin, N.O., Stulov, S.V., Shcherbinin, D.S., Zharkova, M.S., Veselovsky, A.V., Shumyantseva, V.V., Misharin, A.Y., Tkachev, Y.V., Timofeev, V.P., (2014) Novel oxazolinyl derivatives of pregna-5,17(20)-diene as 17a-hydroxylase/17,20-lyase (CYP17A1) inhibitors, Steroids, 88, 66–71. DOI

  22. Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Kuzikov, A.V., Agafonova, L.E., Archakov, A. I. (2015) Electrochemical Methods in Biomedical Studies. Biomeditsinskaya Khimiya, 61(2),188–202. DOI

  23. Shumyantseva V.V., Bulko T.V, Rudakov Yu.O., Kuznetsova G.P., Samenkova N.F., Lisitsa A.V., Karuzina I.I, Archakov A. I. (2007) Electrochemical properties of cytochroms P450 using nanostructured electrodes: Direct electron transfer and electro catalysis. J. Inorg. Biochem., 101, 859-865. DOI

  24. Han, X., Cheng, W., Zhang, Z., Dong, S., and Wang, E. (2002) Direct electron transfer between hemoglobin and a glassy carbon electrode facilitated by lipid-protected gold nanoparticles. Biochem. Biophys. Acta, 1556 (2-3), 273-277. DOI

  25. Shumyantseva, V.V., Makhova, A.A., Bulko, T.V., Kuzikov, A.V., Shich, E.V., Kukes, V., Archakov, A.I. (2015) Electrocatalytic cycle of P450 cytochromes: the protective and stimulating roles of antioxidants. RSC Advances, 5(87), 71306-71313. DOI

  26. Shumyantseva, V.V., Bulko, T.V., Vagin, M.Yu., Suprun, E.V., Archakov, A. I. (2010) Electrochemical Immunoanalysis of Cardiac Myoglobin. Biomeditsinskaya Khimiya, 56(6), 758–768. DOI

  27. Suprun, E.V., Shilovskaya, A.L., Lisitsa, A.V., Bulko, T.V. Shumyantseva, V.V., Archakov, A.I. (2011) Electrochemical Immunosensor Based on Metal Nanoparticles for Cardiac Myoglobin Detection in Human Blood Plasma. Electroanalysis, 23(5), 1051 – 1057. DOI

  28. Shangguan, L., Zhao, Y., Mi, L., Jiang, L, Liu, S. (2016) Direct electrochemistry and electrocatalysis of cytochrome P450s immobilized on gold/graphene-based nanocomposites. J. Electroanal. Chem., 772, 46-51. DOI

  29. Suprun, E.V., Bulko, T.V., Lisitsa, A.V., Gnedenko, O.V., Ivanov, A.S., Shumyantseva, V.V., Archakov, A.I. (2010) Electrochemical nanobiosensor for express diagnosis of acute myocardial infarction in undiluted plasma. Biosensors and Bioelectronics, 25 (7), 1694–1698. DOI

  30. Shumyantseva, V.V., Suprun, E.V., Bulko, T.V., Archakov, A.I. (2009) Electrochemical Methods for the Investigation of Bioaffinity Interactions Based on Gold Nanoparticles Modified Sensors. Electroanalysis, 21(3-5), 530 – 535. DOI

  31. Shumyantseva, V.V., Bulko, T.V., Kuzikov, A.V., Masamrekh, R.A., Konyakhina, A.Yu. Romanenko, I., Max, J.B., Köohler, M., Gilep, A.A., Usanov, S.A., Pergushov, D.V., Schacher, F.H., Sigolaeva, L.V. (2020) All-electrochemical nanocomposite two-electrode setup for quantification of drugs and study of their electrocatalytical conversion by cytochromes P450. Electrochimica Acta, 336, 135579. DOI

  32. Lin, Y-W. (2018) Structure and function of heme proteins regulated by diverse post-translational modifications. Arch. Biochem. Biophys., 641, 1-30. DOI

Published
2020-04-16
Section
PROTOCOLS OF EXPERIMENTS, USEFUL MODELS, PROGRAMS AND SERVICES