Аnticoronaviral Activity of Triterpenoids


  • M.S. Denisov Institute of Technical Chemistry of the Ural Branch of the RAS, 3 Academician Korolev str., Perm, 614013 Russia
  • Ya.A. Beloglazova Institute of Technical Chemistry of the Ural Branch of the RAS, 3 Academician Korolev str., Perm, 614013 Russia




COVID-19; MERS; SARS; coronavirus; triterpenoids


The discovery and investigations of new therapeutic agents with anticoronaviral activity is extremely important due to the COVID-19 pandemic caused by the SARS-CoV-2 virus. Currently, there are no anti-COVID-19 drugs, characterized by efficacy which has been proved in correspondence with criteria of evidence-based medicine. However, there are some anti SARS-CoV-2 drugs, acting on the other Coronaviridae family member causing SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome). Consequently, a wide range of organic substances of synthetic and natural origin were studied for the anticoronaviral activity. The review summarizes and systematizes the literature data on the anti-coronavirus activity of triterpenoids. The structural features of triterpenoids, which are important for the mechanisms of anticoronaviral activity, are discussed. The structures of the most active compounds are presented. The material is classified by approaches to study the anticoronaviral activity of individual substances or plants extracts. Recommendations for the further research of triterpenoids anticoronaviral activity are given.


Vremenny’e metodicheskie rekomendaczii: profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19), Kamkin, E.G. Editor. 2020, Ministerstvo zdravooxraneniya rossijskoj federaczii, Moskow, 165 P.

Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J.A., Lim, W., Rollin, P.E., Dowell, S.F., Ling, A.E., Humphrey, C.D., Shieh, W.J., Guarner, J., Paddock, C.D., Rota, P., Fields, B., DeRisi, J., Yang, J.Y., Cox, N., Hughes, J.M., LeDuc, J.W., Bellini, W.J., Anderson, L.J. (2003) A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. N Engl J Med., 348(20), 1953-1966. DOI

Zumla, A., Hui, D.S., Perlman, S. (2015) Middle East respiratory syndrome. Lancet, 386(9997), 995-1007. DOI

Nikiforov, V.V., Suranova, T.G., Chernobrovkina, T.Yu., Yankovskaya, Y.D., Burova S.V. (2020) New Coronavirus Infection (Covid-19): Clinical and Epidemiological Aspects, 10(2), 87-93. DOI

Payne, S. (2017) Chapter 17 - Family Coronaviridae. Viruses, 149-158. DOI

Li, Z., Tomlinson, A.C.A., Wong, A.H.M, Zhou, D., Desforges, M., Talbot, P.J., Benlekbir, S., Rubinstein, J.L., Rini, J.M. (2019) The human coronavirus HCoV-229E S-protein structure and receptor binding. Elife, 8, e51230-e51251. DOI

Cheng, P.-W., Ng, L.-T., Chiang, L.-C., Lin. C.-C. (2006) Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clinical and Experimental Pharmacology and Physiology, 33(7), 612-616. DOI

Arden, K.E., Nissen, M.D., Sloots, T.P., Mackay, I.M. (2005) New human coronavirus, HCoV‐NL63, associated with severe lower respiratory tract disease in Australia. Journal of medical virology, 75(3), 455-462. DOI

Tsai, Y.-C., Lee, C.-L., Yen, H.-R., Chang, Y.-S., Lin, Y.-P., Huang, S.-H., Lin, C.-W. (2020) Antiviral Action of Tryptanthrin Isolated from Strobilanthes cusia Leaf against Human Coronavirus NL63 Biomolecules, 10(3), 366-373. DOI

Vabret, A., Mourez, T., Gouarin, S., Petitjean, J., Freymuth, F. (2003) An Outbreak of Coronavirus OC43 Respiratory Infection in Normandy, France. Clinical infectious diseases, 36(8), 985-989. DOI

Lau, S.K.P., Woo, P.C.Y., Yip, C.C.Y., Tse, H., Tsoi, H., Cheng, V.C.C., Lee, P., Tang, B.S.F., Cheung, C.H.Y., Lee, R.A., So, L., Lau, Y., Chan, K., Yuen, K. (2006) Coronavirus HKU1 and Other Coronavirus Infections in Hong Kong. J Clin Microbiol., 44(6), 2063-2071. DOI

Kim, J.W., Ha, T.-K.-Q., Cho, H., Kim, E., Shim, S.H., Yang, J.-L., Oh W.K. (2017) Antiviral escin derivatives from the seeds of Aesculus turbinata Blume (Japanese horse chestnut). Bioorganic & Medicinal Chemistry Letters, 27(13), 3019-3025. DOI

Baltina, L.A., Kondratenko, R.M., Baltina, L.A., Plyasunova, O.A., Pokrovskii, A.G., Tolstikov, G.A. (2009) Prospects for the creation of new antiviral drugs based on glycyrrhizic acid and its derivatives (a review). Pharmaceutical Chemistry Journal, 43(10), 539-549. DOI

Kuo, R.-Y., Qian, K., Morris-Natschke, S.L., Lee, K.-H. (2009) Plant-derived triterpenoids and analogues as antitumor and anti-HIV agents. Nat. Prod. Rep., 26(10), 1321-1344. DOI

Osbourn, A., Goss, R.J.M., Field, R.A. (2011) The saponins – polar isoprenoids with important and diverse biological activities Nat. Prod. Rep., 28(7), 1261-1268. DOI

Shang, X., Pan, H., Li, M., Miao, X., Ding, H. (2011) Lonicera japonica Thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Journal of Ethnopharmacology, 138(1), 1-21. DOI

Gupta, S., Pandotra, P., Gupta, A.P., Verma, M.K., Ahuja, A., Vishwakarma, R.A. (2013) Direct rhizogenesis, in vitro stolon proliferation and high-throughput regeneration of plantlets in Glycyrrhiza glabra. Acta Physiol Plant, 35, 2699-2705. DOI

Xiao, S., Tian, Z., Wang, Y., Si, L., Zhang, L., Zhou, D. (2018) Recent progress in the antiviral activity andmechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev, 38(3), 951-976. DOI

Xiaojiaoyang, L., Xiaoyu, L., Nanaa, H., Runping, L., Rong, S. (2018) A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. Phytomedicine, 50, 73-78. DOI

Peng, W., Liu, Y., Hu, M., Zhang, M., Yang, J., Liang, F., Huang, Q., Wu. C. (2019) Toona sinensis: a comprehensive review on its traditional usages, phytochemisty, pharmacology and toxicology. Revista Brasileira de Farmacognosia, 29, 111-124. DOI

Batiha, G.E.-S., Beshbishy, A.M., El-Mleeh, A., Abdel-Daim, M.M., Devkota H.P. (2020) Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules, 10, 352-371. DOI

Barnard, D.L., Kumaki, Y. (2011) Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol., 6(5), 615-631. DOI

Retrieved May 2, 2020, from: https://www.rlsnet.ru/mnn_index_id_2448.htm

Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., Doerr, H.W. (2003) Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 361, 2045-2046. DOI

Chen, H., Du, Q. (2020) Potential natural compounds for preventing 2019-nCoV infection. Preprints, 2020010358. DOI

Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., Zhong, W., Hao, P. (2020) Evolution of the Novel Coronavirus From the Ongoing Wuhan Outbreak and Modeling of Its Spike Protein for Risk of Human Transmission. Sci China Life Sci., 63(3), 457-460. DOI

Wan, Y., Shang, J., Graham, R., Baric, R.S., Li, F. (2020) Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol., 94(7), e00127-e00136. DOI

Luo Liu, P.D., Li., J. (2020) Pharmacological perspective: glycyrrhizin may be an efficacious therapeutic agent for COVID-19. International Journal of Antimicrobial Agents, in press 105995. DOI

Hoever, G., Baltina, L., Michaelis, M., Kondratenko, R., Baltina, L., Tolstikov, G.A., Doerr, H.W. J. Cinatl. (2005) Antiviral Activity of Glycyrrhizic Acid Derivatives against SARS-Coronavirus. J. Med. Chem., 48, 1256-1259. DOI

Baltina, L.A. (2003) Chemical Modification of Glycyrrhizic Acid As A Route to New Bioactive Compounds for Medicine. Current Medicinal Chemistry, 10, 155-171. DOI

Yakovishin, L.A., Grishkovets, V.I. (2018) Molecular complexes of IVy triterpene glycosides with cholesterol. Chemistry of plant raw material, (4), 133-140. DOI

Wu, C.-Y., Jan, J.-T., Ma, S.-H., Kuo, C.-J., Juan, H.-F., Cheng, Y.-S.E., Hsu, H.-H., Huang, H.-C., Wu, D., Brik, A., Liang, F.-S., Liu, R.-S., Fang, J.-M., Chen, S.-T., Liang, P.-H., Wong C.-H. (2004) Small molecules targeting severe acute respiratory syndrome human coronavirus. PNAS, 101(27), 10012-10017. DOI

Petukhova, S.A., Olennikov, D.N., Mirovich, V.M. (2019) Triterpene compounds of the above ground organs of the bupleurum scorzonerifolium willd. Of the baikal region flora, (4), 215-222. DOI

Wei, Y., Ma, C.-M., Hattori, M. (2009) Synthesis and Evaluation of A-seco Type Triterpenoids for anti-HIV-1protease Activity. Eur. J. Med. Chem., 44(10), 4112-4120. DOI

Skvortsov, V.S., Druzhilovskiy, D.S., Veselovsky, A.V. (2020) Potential Inhibitors of Protease 3CLpro Virus COVID-19: Drug Reposition. Biomedical Chemistry: Research and Methods, 3(1), e00124-e00131. DOI

Wen, C.-C., Kuo, Y.-H., Jan, J.-T., Liang, P.-H., Wang, S.-Y., Liu, H.-G., Lee, C.-K., Chang, X.S.-T., Kuo, C.-J., Lee, S.-S., Hou, C.-C., Hsiao, P.-W., Chien, S.-C., Shyur, L.-F., Yang, N.-S. (2007) Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus. J. Med. Chem., 50, 4087-4095. DOI

Hsu, M.F., Kuo, C.J., Chang, K.T., Chang, H.C., Chou, C.C., Ko, T.P., Shr, H.L., Chang, G.G., Wang, A.H., Liang, P.H. (2005) Mechanism of the Maturation Process of SARS-CoV 3CL Protease. Journal of Biological Chemistry, 280(35), 31257-31266. DOI

Bureeva, S., Andia-Pravdivy, J., Symon, A., Bichucher, A., Moskaleva, V., Popenko, V., Shpak, A., Shvets, V., Kozlov, L., Kaplun, A. (2007) Selective inhibition of the interaction of C1q with immunoglobulins and the classical pathway of complement activation by steroids and triterpenoids sulfates. Bioorganic & Medicinal Chemistry, 15, 3489-3498. DOI

Baglivo, M., Baronio, M., Natalini, G., Beccari, T., Chiurazzi, P., Fulcheri, E., Petralia, P., Michelini, S., Fiorentini, G., Miggiano, G.A., Morresi, A., Tonini, G., Bertelli, M. (2020) Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity? Acta Biomed, 91(1), 161-164. DOI

Verma, S.P. (2009) HIV: A Raft-Targeting Approach for Prevention and Therapy Using Plant-Derived Compounds (Review). Curr Drug Targets, 10(1), 51-59. DOI

Rezanka, T., Siristova, L., Sigler, K. (2009) Sterols and Triterpenoids with Antiviral Activity. Anti-Infective Agents in Medicinal Chemistry, 8(3), 193-210. DOI

Chang, F.-R., Yen, C.-T., EI-Shazly, M., Lin, W.-H., Yen, M.-H., Lind, K.-H., Wu, Y.-C. (2012) Anti-Human Coronavirus (anti-HCoV) Triterpenoids from the Leaves of Euphorbia neriifolia. Natural Product Communications, 7(11), 1415-1417.

Yang, J.-L., Ha, T.-K.-Q., Dhodary, B., Pyo, E., Nguyen, N.H., Cho, H., Kim, E., Oh, W.K. (2015) Oleanane Triterpenes from the Flowers of Camellia japonica Inhibit Porcine Epidemic Diarrhea Virus (PEDV) Replication. J Med Chem., 58(3), 1268-1280. DOI

Yang, J.-L., Ha, T.K.Q., Oh, W.K. (2016) Discovery of inhibitory materials against PEDV corona virus from medicinal plants. Japanese Journal of Veterinary Research, 64(1), 53-63. DOI

Ryu, Y.B., Park, S.-J., Kim, Y.M., Lee, J.-Y., Seo, W.D., Chang, J.S., Park, K.H., Rho, M.-C., Lee, W.S. (2010) SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorganic & Medicinal Chemistry Letters, 20(6), 1873-1876. DOI

Tolkachev, O.N., Tolkachev, V.N., Sheichenko, O.P., Fateeva, T.V., Semenov, A.V., Abizov, E.A. (2018) Indole alkaloids and their analogues: biological activity study. Problems of biological, medical and pharmaceutical chemistry, (9), 3-14. DOI

Lu, Y., Zhou, J., Hu, T., Zhang, Y., Su, P., Wang, J., Gao, W., Huang, L. (2018) A multifunctional oxidosqualene cyclase from Tripterygium regelii that produces both a- and bamyrin. RSC Adv., 8, 23516-23521. DOI

Chen, C.-J., Michaelis, M., Hsu, H.-K., Tsai, C.-C., Yang, K.D., Wu, Y.-C., Cinatl, J., Doerrc, H.W. (2008) Toona sinensis Roem tender leaf extract inhibits SARScoronavirus replication. Journal of Ethnopharmacology, 120, 108-111. DOI



How to Cite

Denisov, M., & Beloglazova, Y. (2020). Аnticoronaviral Activity of Triterpenoids. Biomedical Chemistry: Research and Methods, 3(2), e00127. https://doi.org/10.18097/BMCRM00127