Identification of Genes whose mRNAs are Subjected to Alternative Splicing by Endonuclease EndoG Action in Human and Murine CD4+ T Lymphocytes


  • D.D. Zhdanov Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia; Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198 Russia
  • N.S. Novachly Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198 Russia
  • M.V. Pokrovskaya Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • S.S. Aleksandrova Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • T.A. Kabardokov Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198 Russia
  • N.N. Sokolov Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia



lymphocytes; EndoG; alternative splicing; sequencing


The aim of this work was to identify genes whose mRNAs were subjected to alternative splicing by apoptotic endonuclease EndoG in CD4+ Т lymphocytes from healthy humans, mice, and rats. In order to induce EndoG, lymphocytes were transfected with an EndoG-containing plasmid, or a control pGFP plasmid, or were incubated with cisplatin. Efficiency of transfection, number of cells with DNA damages and the level of EndoG expression have been monitored. Total cell mRNA has been sequenced and the changes in proportion of splice variants of genes were analyzed. The changes in the proportion of 28 mRNA splice variants have been identified in human and murine lymphocytes in both transfected with EndoG gene or incubated with cisplatin. Thus, EndoG can be considered as a potent modulator of alternative splicing of mRNA of identified genes.


  1. Kim, E., Magen, A., Ast, G. (2007) Different levels of alternative splicing among eukaryotes. Nucleic Acids Res., 35, 125. DOI
  2. Zhdanov, D.D., Vasina, D.A., Grachev, V.A., Orlova, E. V., Orlova, V.S., Pokrovskaya, M. V., Alexandrova, S.S., Sokolov, N.N (2017) Alternative splicing of telomerase catalytic subunit hTERT generated by apoptotic endonuclease EndoG induces human CD4 + T cell death. Eur. J. Cell Biol., 96, 653–664. DOI
  3. Zhdanov, D.D., Vasina, D.A., Orlova, E. V., Orlova, V.S., Pokrovskaya, M. V., Aleksandrova, S.S., Sokolov, N.N. (2017) Apoptotic endonuclease EndoG regulates alternative splicing of human telomerase catalytic subunit hTERT. Biochemistry (Moscow), Suppl. Ser. B Biomed. Chem., 11, 154–165. DOI
  4. Zhdanov, D.D., Gladilina, Y.A., Pokrovsky, V.S., Grishin, D. V., Grachev, V.A., Orlova, V.S., Pokrovskaya, M. V., Alexandrova, S.S., Plyasova, A.A., Sokolov, N.N. (2019) Endonuclease G modulates the alternative splicing of deoxyribonuclease 1 mRNA in human CD4+ T lymphocytes and prevents the progression of apoptosis. Biochimie, 157, 158–176. DOI
  5. Zhdanov, D.D., Gladilina, Y.A., Pokrovskaya, M. V., Aleksandrova, S.S., Grishin, D. V., Podobed, O. V., Sokolov, N.N. (2018) Induction of Alternative Splicing and Inhibition of Activity of Telomerase Catalytic Subunit by Apoptotic Endonuclease EndoG in Human T, B, and NK Cells. Bull. Exp. Biol. Med., 164, 478–482. DOI
  6. Vasina, D.A., Zhdanov, D.D., Orlova, E. V., Orlova, V.S., Pokrovskaya, M. V., Aleksandrova, S.S., Sokolov, N.N. (2017) Apoptotic endonuclease EndoG inhibits telomerase activity and induces malignant transformation of human CD4+ T cells. Biochemistry (Moscow), 82, 24–37. DOI
  7. Basnakian, A.G., Apostolov, E.O., Yin, X., Napirei, M., Mannherz, H.G., Shah, S. V. (2005) Cisplatin Nephrotoxicity Is Mediated by Deoxyribonuclease I. J. Am. Soc. Nephrol., 16, 697–702. DOI
  8. Darzynkiewicz, Z., Galkowski, D., Zhao, H. (2008) Analysis of apoptosis by cytometry using TUNEL assay. Methods., 44, 250–254. DOI
  9. Cheranova, D., Gibson, M., Chaudhary, S., Zhang, L.Q., Heruth, D.P., Grigoryev, D.N., Qing, Ye S. (2013) RNA-seq Analysis of Transcriptomes in Thrombin-treated and Control Human Pulmonary Microvascular Endothelial Cells. J. Vis. Exp., 72, 4393. DOI
  10. Zhang, L.Q., Cheranova, D., Gibson, M., Ding, S., Heruth, D.P., Fang, D., Ye, S.Q. (2012) RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin. PLoS One., 7, e31229. DOI
  11. Heruth, D.P., Gibson, M., Grigoryev, D.N., Zhang, L.Q., Ye, S.Q. (2012) RNA-seq analysis of synovial fibroblasts brings new insights into rheumatoid arthritis. Cell Biosci., 2, 43. DOI
  12. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., Pachter, L. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562–578. DOI
  13. Nebert, D.W. (2017) Aryl hydrocarbon receptor (AHR): "pioneer member" of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of "sensors" of foreign and endogenous signals. Prog. Lipid Res. 67, 38–57. DOI
  14. Von Stechow, L., Typas, D., Carreras Puigvert, J., Oort, L., Siddappa, R., Pines, A., Vrieling, H., van de Water, B., Mullenders, L.H.F., Danen, E.H.J. (2015) The E3 Ubiquitin Ligase ARIH1 Protects against Genotoxic Stress by Initiating a 4EHP-Mediated mRNA Translation Arrest, Mol. Mol. Cell. Biol., 35, 1254–1268. DOI
  15. Buhr, E.D., Takahashi, J.S. (2013) Molecular components of the Mammalian circadian clock. Handb. Exp. Pharmacol., 217, 3–27. DOI
  16. Bruey, J.-M., Bruey-Sedano, N., Luciano, F., Zhai, D., Balpai, R., Xu, C., Kress, C.L., Bailly-Maitre, B., Li, X., Osterman, A., Matsuzawa, S., Terskikh, A. V., Faustin, B., Reed, J.C. (2007) Bcl-2 and Bcl-XL Regulate Proinflammatory Caspase-1 Activation by Interaction with NALP1. Cell., 129, 45–56. DOI
  17. Falsetta, M.L., Foster, D.C., Woeller, C.F., Pollock, S.J., Bonham, A.D., Haidaris, C.G., Phipps, R.P. (2016) A Role for Bradykinin Signaling in Chronic Vulvar Pain. J. Pain., 17, 1183–1197. DOI
  18. Zhivotovsky, B., Orrenius, S. (2005) Caspase-2 function in response to DNA damage. Biochem. Biophys. Res. Commun., 331, 859–867. DOI
  19. Kazuo, M., Sumio, S. (1994) Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene, 138, 171–174. DOI
  20. Hardin, P.E. (2000) From biological clock to biological rhythms. Genome Biol., 1 (4), reviews1023.1 - reviews1023.5. DOI
  21. Bale, T.L., Vale, W.W. (2004) CRF AND CRF RECEPTORS: Role in Stress Responsivity and Other Behaviors. Annu. Rev. Pharmacol. Toxicol., 44, 525–557. DOI
  22. Peitsch, M.C., Polzar, B., Stephan, H., Crompton, T., MacDonald, H.R., Mannherz, H.G., Tschopp, J. (1993) Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J., 12, 371–377. DOI
  23. Ko, M.S., Lee, U.H., Kim, S. I., Kim, H.J., Park, J.J., Cha, S.J., Kim, S.B., Song, H., Chung, D.K., Han, I.S., Kwack, K., Park, J.W. (2004) Overexpression of DRG2 suppresses the growth of Jurkat T cells but does not induce apoptosis. Arch. Arch. Biochem. Biophys., 422, 137–144. DOI
  24. Lu, L., Barbi, J., Pan, F. (2017) The regulation of immune tolerance by FOXP3. Nat. Rev. Immunol., 17, 703–717. DOI
  25. Ji, S., Xin, H., Li, Y., Su, E.J. (2018) FMS-like tyrosine kinase 1 (FLT1) is a key regulator of fetoplacental endothelial cell migration and angiogenesis. Placenta., 70, 7–14. DOI
  26. Middeldorp, J., Hol, E.M. (2011) GFAP in health and disease. Prog. Neurobiol., 93, 421–443. DOI
  27. Scala, M., Amadori, E., Fusco, L., Marchese, F., Capra, V., Minetti, C., Vari, M.S., Striano, P. (2019) Abnormal circadian rhythm in patients with GRIN1-related developmental epileptic encephalopathy. Eur. J. Paediatr. Neurol., 23, 657–661. DOI
  28. Vizeacoumar, F.J., Arnold, R., Vizeacoumar, F.S., et al. (2013) A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities1. Mol. Syst. Biol., 9, 696. doi:10.1038/msb.2013.54 DOI
  29. Yasuda, K., Nakanishi, K., Tsutsui, H. (2019) Interleukin-18 in Health and Disease. Int. J. Mol. Sci., 20, E649. DOI
  30. Fu, K., Sun, X., Wier, E.M., Hodgson, A., Liu, Y., Sears, C.L., Wan, F. (2016) Sam68/KHDRBS1 is critical for colon tumorigenesis by regulating genotoxic stress-induced NF-κB activation. Elife, 5, e15018. DOI
  31. Deng, Q., Chen, Y., Yin, N., Shan, N., Luo, X., Yuan, Y., Luo, X., Liu, Y., Liu, X., Qi, H. (2017) The Role of MGAT5 in Human Umbilical Vein Endothelial Cells. Reprod. Sci., 24, 313–323. DOI
  32. Kim, E.K., Cho, Y.A., Seo, M.-K., Ryu, H., Cho, B.C., Koh, Y.W., Yoon, S.O. (2019) NOVA1 induction by inflammation and NOVA1 suppression by epigenetic regulation in head and neck squamous cell carcinoma. Sci. Rep., 9, 11231. DOI:10.1038/s41598-019-47755-8 DOI
  33. Yin, L., Wu, N., Curtin, J.C., Qatanani, M., Szwergold, N.R., Reid, R.A., Waitt, G.M., Parks, D.J., Pearce, K.H., Wisely, G.B., Lazar, M.A. (2007) Rev-erb, a Heme Sensor That Coordinates Metabolic and Circadian Pathways. Science, 318, 1786–1789. DOI
  34. Lertkiatmongkol, P., Liao, D., Mei, H., Hu, Y., Newman, P.J. (2016) Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr. Opin. Hematol, 23, 253–259. DOI
  35. Anandasabapathy, N., Ford, G.S., Bloom, D., Holness, C., Paragas, V., Seroogy, C., Skrenta, H., Hollenhorst, M., Fathman, C.G., Soares, L. (2003) GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity., 18, 535–547. DOI
  36. Berger, A., Sommer, A.F.R., Zwarg, J., Hamdorf, M., Welzel, K., Esly, N., Panitz, S., Reuter, A., Ramos, I., Jatiani, A., Mulder, L.C.F., Fernandez-Sesma, A., Rutsch, F., Simon, V., König, R., Flory, E. (2011) SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog., 7, e1002425. DOI
  37. Sun, C., Zhang, F., Ge, X., Yan, T., Chen, X., Shi, X., Zhai, Q. (2007) SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab., 6, 307–319. DOI
  38. Ferré, P., Foufelle, F. (2010) Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes, Obes. Metab., 12, 83–92. DOI
  39. Liu, X., Wang, Y., Chang, G., Wang, F., Wang, F., Geng, X. (2017) Alternative Splicing of hTERT Pre-mRNA: A Potential Strategy for the Regulation of Telomerase Activity. Int. J. Mol. Sci., 18(3), 567 DOI
  40. Sparrer, K.M.J., Gableske, S., Zurenski, M.A., Parker, Z.M., Full, F., Baumgart, G.J., Kato, J., Pacheco-Rodriguez, G., Liang, C., Pornillos, O., Moss, J., Vaughan, M., Gack, M.U. (2017) TRIM23 mediates virus-induced autophagy via activation of TBK1. Nat. Microbiol., 2, 1543–1557. DOI



How to Cite

Zhdanov, D., Novachly, N., Pokrovskaya, M., Aleksandrova, S., Kabardokov, T., & Sokolov, N. (2020). Identification of Genes whose mRNAs are Subjected to Alternative Splicing by Endonuclease EndoG Action in Human and Murine CD4+ T Lymphocytes. Biomedical Chemistry: Research and Methods, 3(2), e00128.