Construction and Expression of the Chimeric Human Renalase Gene Encoding the N-Terminal Signal Sequence of the Secretory Protein Prolactin

Main Article Content

V.I. Fedchenko
A.A. Kaloshin
A.V. Veselovsky
A.E. Medvedev

Abstract

Renalase (RNLS) is a protein that performs various protective functions both inside and outside cells. Intracellular RNLS is a FAD-dependent oxidoreductase (EC 1.6.3.5). Extracellular RNLS lacking an N-terminal peptide does not interact with FAD and exhibits various protective effects on the cell through interaction with receptor proteins. The mechanisms and factors responsible for RNLS transport out of the cell are not fully understood. It is well known that the signal sequence plays a key role in the classical mechanism of protein transport outside cells. One of the approaches to study the secretion of RNLS from the cell can be the creation of chimeric forms of the protein with a modified N-terminal amino acid signal sequence. Bioinformatics analysis showed that the signal sequence of the prolactin gene (PRL), connected to the template sequence of the RNLS gene, gave the classic signal characteristic of secretory proteins. On this basis, this paper describes: (i) a method for constructing the human RNLS gene in which the N-terminal sequence encoded by the RNLS gene was replaced by the N-terminal sequence encoded by the PRL gene; (ii) expression of this chimeric genetic construct.

Article Details

How to Cite
Fedchenko, V., Kaloshin, A., Veselovsky, A., & Medvedev, A. . (2022). Construction and Expression of the Chimeric Human Renalase Gene Encoding the N-Terminal Signal Sequence of the Secretory Protein Prolactin. Biomedical Chemistry: Research and Methods, 5(2), e00175. https://doi.org/10.18097/BMCRM00175
Section
EXPERIMENTAL RESEARCH

References

  1. Xu, J., Li, G., Wang, P., Velazquez, H., Yao, X., Li, Y., Wu, Y., Peixoto, A., Crowley, S., Desir, G.V. (2005) Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J. Clin. Invest., 115(5), 1275–1280. DOI
  2. Medvedev, A.E., Veselovsky, A.V., Fedchenko, V.I. (2010) Renalase, a new secretory enzyme responsible for selective degradation of catecholamines: achievements and unsolved problems. Biochemistry (Moscow), 75(8), 951-958. DOI
  3. Baroni, S., Milani, M., Pandini, V., Pavesi, G., Horner, D., Aliverti, A. (2013) Isrenalase a novel player in catecholaminergic signaling? The mystery of the catalytic activity of an intriguing new flavoenzyme. Curr. Pharm. Des., 19, 2540-2551. DOI
  4. Desir, G.V., Peixoto, A.J. (2014) Renalase in hypertension and kidney disease. Nephrol. Dial. Transplant., 29(1), 22-28. DOI
  5. Moran, G.R. (2016) The catalytic function of renalase: A decade of phantoms. BiochimBiophysActa, 1864(1), 177-186. DOI
  6. Moran, G.R., Hoag, M.R. (2017) The enzyme: Renalase. Arch. BiochemBiophys, 632, 66-76. DOI
  7. Milani, M., Ciriello, F., Baroni, S., Pandini V., Canevari, G., Bolognesi, M., Aliverti, A. (2011) FAD-binding site and NADP reactivity in human renalase: a new enzyme involved in blood pressure regulation. J. Mol. Biol., 411(2), 463-473. DOI
  8. Fedchenko, V.I,. Buneeva, O.A., Kopylov, A.T., Veselovsky, A.V., Zgoda, V.G., Medvedev, A.E. (2015) Human urinary renalase lacks the N-terminal signal peptide crucialfor accommodation of its FAD cofactor. International Journal of Biological Macromolecules, 78, 347–353. DOI
  9. Wang, Y., Safirstein, R., Velazquez, H., Guo, X.J., Hollander, L., Chang, J., Chen, T.M., Mu, J.J., Desir, G.V. (2017) Extracellular renalase protects cells and organs by outside-in signalling. J Cell Mol Med., 21(7), 1260-1265. DOI
  10. Kolodecik, T.R., Reed, A.M., Date, K., Shugrue, C.A., Patel, V., Chung, S.L.,
  11. Desir, G.V., Gorelick, F.S. (2017) The serum protein renalase reduces injury in experimentalpancreatitis. J. Biol. Chem., 292(51), 21047–21059. DOI
  12. 11. Wang, L., Velazquez, H., Chang, J., Safirstein, R., Desir, G.V. (2015) Identification of a receptor for extracellular renalase. PLoS One, 10, e0122932. DOI
  13. Fedchenko, V., Kopylov, A., Kozlova, N., Buneeva, O., Kaloshin, A., Zgoda, V., Medvedev, A. (2016) Renalase Secreted by Human Kidney НЕК293Т Cells Lacks its N-Terminal Peptide: Implications for Putative Mechanisms of Renalase Action. Kidney Blood Press Res., 41, 593-603. DOI
  14. Fedchenko, V.I., Kaloshin, A.A., Kozlova, N.I., Kopylov, A.T., Medvedev, A.E.(2020) Construction of a chimeric human gene encoding renalase with a modified N-terminus. Biomedical Chemistry: Research and Methods, 3(3), e00137. DOI
  15. Fedchenko, V.I., Kaloshin, A.A. (2019) A simplified method for obtaining cDNA of low-copy and silent eukaryotic genes using human renalase as anexample. Biomedical Chemistry: Research and Methods. 2(2), e00101. DOI
  16. Fedchenko, V.I.,. Kaloshin, A.A., Mezhevikina, L.M., Buneeva, O., Medvedev A.E. (2013) Construction of the Coding Sequence of the Transcription Variant 2 of the Human RenalaseGene and Its Expression in the Prokaryotic System, Int. J. Mol. Sci. 14, (6), 12764-7779. DOI
  17. Käll, L., Krogh, A., Sonnhammer, E.L.L. (2007) Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server, Nucleic Acids Res., 35, W429-32. DOI
  18. Juan, J., Armenteros, A., Salvatore, M., Winther, O. (2019) Ol of Emanuelsson, Gunnar von Heijne, Arne Elofsson, and Henrik Nielsen. Detecting Sequence Signals in Targeting Peptides Using Deep Learning. Life Science Alliance, 2 (5), e201900429. DOI
  19. Juan, J., o Armenteros, A., Konstantinos, D., Tsirigos, C.K.S., Petersen, T.N., Winther, O., Brunak, S., Heijne, G., Nielsen, H. (2019) Signal P 5.0 improves signal peptide predictions using deep neural networks, Nature Biotechnology, 37, 420-423, DOI
  20. Bendtsen, J., Kiemer, D. L., Fausbøll, A,. Brunak, S. (2005) Non-classical protein secretion in bacteria.BMC Microbiology, 5, 58. DOI
  21. Bhasin, M., Raghava, G.P. (2004) ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST. Nucleic Acids Res. 32(suppl_2), W414-419. DOI
  22. Shen, H.-B., Chou, K.-C. (2009) A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0, Analytical Biochemistry, 394, 269-274. DOI
  23. Pierleoni, A., Martelli, P.L., Fariselli, P., Casadio, R. (2006) BaCelLo: a balanced subcellular localization predictor. Bioinformatics, 15:22(14):e408-16. DOI
  24. Drozdetskiy, A., Cole, C., Procter, J., Barton, G.J. (2006) JPred4: a protein secondary structure prediction server. Nucleic Acids Res., 43(W1), W389–W394. DOI
  25. Buchan, D.W.A., Jones, D.T. (2019) The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res., 47(W1), W402-W407. DOI
  26. Garnier, J., Gibrat, J-F., Robson, B. (1996) GOR secondary structure prediction method version IV. Methods in Enzymology R.F. Doolittle Ed., 266, 540-553.
  27. Geourjon, C., Deleage, G. (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci., 11(6), 681-684. DOI
  28. Lee, P.Y., Costumbrado, J., Hsu, C.Y., Kim, Y. H. (2012) Agarose Gel Electrophoresis for the Separation of DNA Fragments. J. Vis. Exp., 62, e3923, DOI
  29. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; 227, 680-685. DOI
  30. Kushner, S. R. (1978) An improved method for transformation of Escherichia coli with ColE1-derived plasmids. In: Genetic engineering (Boyer H.B. and Nicosia S., eds.), Elsevier, North-Holland, Amsterdam, p. 17
  31. Fedchenko, V.I., Kaloshin, A.A., Kaloshina, S.A., Medvedev, A.E. (2021) Expression and isolation of N-terminal trancated human recombinant renalase in prokariotic cells. Biomedical Chemistry: Research and Methods, 4(3), e00158. DOI
  32. Freeman, M. E., Kanyicska, B., Lerant, A., and Nagy, G. (2000) Prolactin: structure, function, and regulation of secretion. Physiol. Rev., 80, 1523–1631. DOI
  33. Fedchenko, V.I., Kaloshin, A.A. (2019) A simplified method for obtaining cDNA of low-copy and silent eukaryotic genes using human renalase as an example. Biomedical Chemistry: Research and Methods, 2(2), e00101. DOI