Methods of Delivery of Medications for the Treatment of Oncological Diseases

Main Article Content

N.D Oltarzhevskaja
G.E. Krichevskij
M.A. Korovina
V.I. Shvets
A.A. Kubatiev

Abstract

The review focuses on the analysis of various methods of obtaining and applying therapeutic materials used for targeted drug delivery to the lesion site of cancer patients. Special attention is paid to creation of targeted drugs by using nanotransporters, obtained by dispersing lipids in water and, in particular, liposomes; efficiencyof such nanotransporters depends the nature of drugs introduced into them (cytostatics). The review also describes methods of targeted transport of cytostatics to tumor tissues. The use of hydrogel therapeutic compositions based on biopolymers polysaccharides for the targeted delivery of chemotherapy drugs introduced into them, allows to control the mass transfer rate of drugs to tumor and to create therapeutic materials with predetermined properties in terms of drug concentration in the lesion site and time prolongation, which reduces toxicity of the treatment and increase its effectiveness.

Article Details

How to Cite
Oltarzhevskaja, N., Krichevskij, G., Korovina, M., Shvets, V., & Kubatiev, A. (2019). Methods of Delivery of Medications for the Treatment of Oncological Diseases. Biomedical Chemistry: Research and Methods, 2(1), e00089. https://doi.org/10.18097/BMCRM00089
Section
REVIEWS

References

  1. Altomare, L., Bonetti, L., Campiglio, C.E., De Nardo, L., Draghi, L., Tana, F., Farè, S. (2018). Biopolymer-based strategies in the design of smart medical devices and artificial organs. Int. Journal of Artificial Organs, 41(6), 337-359. DOI
  2. Scaffaro, R., Lopresti, F., Maio, A. (2017). Development of polymeric functionally graded scaffolds: A brief review. Journal of Applied Biomaterials and Fundamental Materials, 15(2), 107-121. DOI
  3. Roy, D., Cambre, J.N., Sumerlin, B.S. (2010). Future perspectives and recent advances in stimuli-responsive materials. Progress in Polymer Science, 35 (1-2), 278-301. DOI
  4. Ghorbani, M., Nourani, M.R., Azam,i M., Hashemi Beni, B., Asadpour, S., Bordbar, S. (2017). Injectable natural polymer compound for tissue engineering of intervertebral disc: In vitro study. Mater Sci Eng C Mater Biol., 1, 502-508. DOI
  5. Postnov, V.N., Naumysheva, E.B., Korolev, D.V., Galagudza, M.M. (2013). Nanoscale carriers for drug delivery. Biotechnosphere, 6 (30), 16-27.
  6. Galagudza, M.M., Korolev, D.V., Sonin, D.L., Aleksandrov, I.V., Postnov, V.N., Papayan, G.V., Shlyakhto, E.V. (2010). Passive directional drug delivery to ischemic myocardium using silica nanoparticles. Russian nanotechnologies, 5 (11-12), 92 – 97.
  7. Galagudza, M.M., Korolev, D.V., Sonin, D.L. Aleksandrov, I.V., Postnov, V.N., Papayan, G.V., Shlyakhto, E.V. (2009). Targeted delivery of drugs - the results of recent years and prospects. J of Nanotechnology and Ecology of Production, 2(2) Human ecology., 2, 132 – 138.
  8. Baryshnikov, A.Yu. (2012) Nanostructured liposomal systems as a means of delivering anticancer drugs. Bulletin of the Russian Academy of Medical Sciences, 67 (3), 23-31.
  9. Shvets, V.I., Krasnopolsky, Yu.M., Sorokumova, G.M. (2017). Liposomal forms of drugs: technological features of production and use in the clinic. Remedium, М. 197 s.
  10. Sun, J., Tan, H. (2013) Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials (Basel), 6(4), 1285–1309. DOI
  11. Tan, H., Marra, K.G. (2010). Injectable, Biodegradable Hydrogels for Tissue Engineering Applications. Materials (Basel), 3(3), 1746–1767. DOI
  12. Viswanath, B., Kim, S. (2017). Influence of Nanotoxicity on Human Health and Environment: The Alternative Strategies. Rev Environ Contam Toxicol., 242, 61-104. DOI
  13. McShan, D., Ray, P.C., Yu, H. (2014). Molecular toxicity mechanism of nanosilver. J Food Drug Anal., 22(1), 116-127. DOI
  14. Chen, X., Schluesener, H.J. (2008). Nanosilver: A nanoproduct in medical application Toxicology Letters, 176 (1), 1-12. DOI
  15. Gonsalves, K., Khalbershtadt, K., Lorensin, K., Nair, L. (2015). Nanostructures in Biomedicine (translated from English), BINOM. Knowledge Lab. М. 519 s.
  16. Prabhu, V., Siddik, U., Mariammal, V., Grac,e B., Guruvayoorappan, C. (2011). Nanoparticles in Drug Delivery and Cancer Therapy: The Giant Rats Tail. J. of Cancer Therapy, 2(3), 325 – 334. DOI
  17. Wang, X., Yang, L., Chen, Z.G., Shin, D.M. (2008). Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin, 58(2), 97-110. DOI
  18. Parveen, S., Sahoo, S.K. (2008). Polymeric nanoparticles for cancer therapy. J Drug Target., 16(2), 108-23. DOI
  19. Tolkacheva, E.V., Oborotova, N.A. (2006). Liposomes as a vehicle for the delivery of biologically active molecules. Russian Biotherapeutic Journal., 5, 54 – 61.
  20. Krasnopolsky, Yu.M., Stepanov, A.E. , Shvets, V.I. (2009). Technological aspects of obtaining liposomal drugs in GMP conditions Biopharmaceutical journal., 1(3), 18-29.
  21. Galperina, S.E., Shvets, V.I. (2009). Drug delivery systems based on polymer nanoparticles. Journal of Biotechnology. 3, 8-23.
  22. Nikolskaya, E.D., Zhunina, O.A., Yabbarov, N.G., Shvets, V.I., Krugly, B.I., Severin, E.S. (2017). Developmet of target delivery system based on actinomycin class drugs and recombinant alpha-fetoprotein. Doklady Biochemistry and Biophysics. 473 (1), 148-150.
  23. Nikolskaya, E.D., Faustova, M.R., Mollaev, M.D., Zhunina, O.A., Sokol, M.B., Yabbarov, N.G., Gukasova, N.V., Lobanov, A.V., Shvets, V.I., Severin, E.S. (2018). Development of a polymer delivery system for daunorubicin in tumor cells to overcome drug resistance. Proceedings of the Academy of Sciences. Chemical series., 4, 747-756.
  24. Faustova, M.R., Nikolskaya, E.D., Zhunina, O.A., Mollaev, MD, Yabbarov, NG, Lobanov, AV, Melnikov, M.Ya., Severin, E.S. (2018). Polymer particles containing FECL- tetraphenylporphyrin for binary catalytic therapy of neoplasms. News of the Academy of Sciences. Chemical series. 2, 359-365.
  25. Kritchenkov, A.S., Gusev, K.A., Raik, S.V., Golyshev, A.A., Skorik, Yu.A. (2016). Self-sorbing nanoparticles of amphiphilic chitosan derivatives for passive transport of anticancer drugs. Proceedings of the Ufa Scientific Center of the Russian Academy of Sciences, 3(1), 46-49.
  26. Vakker, A.V., Yurkshtovich, T.L., Bychkovsky, P.M. (2010). Intraoperative local chemotherapy for patients with head and neck cancer with the prolonged preparation “Cisplacel”, Siberian Journal of Oncology, 6, 48-51.
  27. Veevnik, D.P. (2014). Problems and prospects of intraoperative chemotherapy for malignant brain tumors. Bulletin of the National Academy of Sciences of Belarus. Medical Science Series, 3, 113-123.
  28. Sakovich, I.I., Fedulov, A.S., Kvachev,a Z.B., Veevnik, D.P., Pyko, I.V. (2007) The use of cultures of tumor cells of the central nervous system to study the mechanisms of the antitumor activity of Temozolomide immobilized on highly substituted dextran phosphate (preclinical research). Medical Journal, 3, 79-81.
  29. Veevnik, D.P. (2012). Comparative studies of the antitumor activity of the drug Temodex in various transplantable cell lines of gliomas of humans and animals. News of Biomedical Sciences., 6 (3), 38-46.
  30. Kladiev, A.A., Bychkovsky, P.M., Revtovich, M.Yu., Istomin, Yu.P., Aleksandrova, E.N., Shchmak, A.I., Yurkshtovich, T.L., Golub, N.V., Alinovskaya, V.A., Kosterova, R.I., Solomevich, S.O. (2012). Antitumor activity of immobilized prospidin in an in vivo experiment. Oncological journal, 6(4), 7-11.
  31. Yurkshtovich, T.L., Solomevich, S.O., Bychkovsky, P.M., Golub, N.V., Alinovskaya, V.A., Kosterova, R.I., Kladiev, A.A. (2013). Investigation of the sorption interactions of the anticancer drug Prospidin with the gel-forming quick-swellable dextran phosphate. Transactions of the Belarusian State University. Ser. Physiological, biochemical and molecular basis of the functioning of biosystems., 8 (1), 260-265.
  32. Yurkshtovich, T.L., Solomevich, S.O., Golub, N.V., Alinovskaya V.A., Kosterova, R.I., Bychkovsky, P.M., Kladiev, A.A. (2014). Sorption of the anticancer drug prospidin on polysaccharide phosphate microgels. Colloid Journal., 76 (5), 679-688.
  33. Bychkovsky, P.M., Shmak, A.I., Revtovich, M.Yu., Yurkshtovich, T.L., Krasny, S.A., Solomevich, S.O. (2015). The use of polyimmobilized chemotherapy drugs for intraperitoneal therapy of disseminated peritoneal lesions. Healthcare., 1, 45-50.
  34. Targeted drug delivery in the treatment of cancer patients [A.V. Boyko et al.]; under. ed. Boyko, A.V., Korytova, L.I., Oltarzhevskaya, N.D. M.: MK, 2013. 200 s.
  35. Oltarzhevskaya, N. D., Krichevsky, G. E., Korovina, M. A., Gusev, I. V. (2017). Biopolymers in medicine. Successes, problems, future. Therapeutic depot materials based on biopolymer sodium alginate. Principles of creation and application (review). Biopharmaceutical journal, 9 (2), 3-25.
  36. Oltarzhevskaya, N.D., Shvets, V.I., Korovina, M.A., Lipatova, I.M., Khlystova, T.S. (2016). The choice of the composition of a biopolymer therapeutic depot composition for use in various fields of medicine. Biotechnology, 1, 43-52. DOI
  37. Grigorieva, M.V. (2011). Polymer systems with controlled release of biologically active compounds. Biotechnology, 4(2), 9-23.
  38. Summa, M., Russo, D., Penna, I. , Margarol,i N., Bayer, I.S., Bandiera, T., Athanassiou, A., Bertorelli, R. (2018). A biocompatible sodium alginate/povidone iodine film enhances wound healing. European Journal of Pharmaceutics and Biopharmaceutics, 122, 17-24. DOI
  39. Chen, H., Xing, X., Tan, H., Jia, Y., Zhou, T., Chen, Y., Ling, Z., Hu, X. (2017). Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Materials Science and Engineering, 70, 287-295. DOI
  40. Yusov,a A.A., Gusev, I.V., Lipatova, I.M. (2014). Properties of hydrogels based on mixtures of sodium alginate with other polysaccharides of natural origin. Chemistry of plant materials, 4, 59-66. DOI
  41. Nikitenkova, V.N., Khlystova, T.S. (2012). Development of technology for creating medical devices with radioprotective properties. Textile industry, 1, 38-41.
  42. Oltarzhevskay,a N. D., Korovina, M. A., Boyko, A. V., Korytova, L. I. (2014). New domestic materials "Coletex" and "Colegal" for the prevention and treatment of radiation reactions in cancer patients. Medical alphabet, 3-4 (18), 53-58.
  43. Boyko, A.V., Oltarzhevskaya, N. D., Shvets, V. I., Demidova, L. V., Dunaeva, E. A., Dubovetskaya, O. B., Melnikova, V. Yu., Erastova, E. I., Kozhevnikova, S.A. (2018). New opportunities for drug delivery in oncology. Pathological physiology and experimental therapy, 62 (3), 120–127.
  44. Korman, D. B. (2006). Fundamentals of anticancer chemotherapy, Practical medicine, М. 512 s.
  45. Au, J.L, Sadée, W. (1981) The pharmacology of ftorafur (R,S-l-(tetrahydro-2-furanyl)-5- fluorouracil). Recent. Res. Cancer Res., 76, 100 – 114.
  46. Johnson, RK, Garibjanian, BT, Houchens, DP, Kline, I, Gaston, MR, Syrkin, AB, Goldin, A. (1976). Comparison of 5-fluorouracil and ftorafur. I. Quantitative and qualitative differences in toxicity to mice. . Cancer Treat Rep., 60(9), 1335-45.
  47. Oltarzhevskaya, N.D., Korovina, M.A. (2011). Medical textile materials for targeted drug delivery in oncological practice // Russian Chemical Journal, LV (3), 97-106.
  48. Gusev, I.V., Oltarzhevskaya, ND., Korovin, M.A., Boyko, A.V., Demidova, L.V., Droshnev,a I.V., Dunaeva, E.A., Fedorenko, N.A., Dubovetskaya, O.B. (2015). The use of highly structured gel materials based on sodium alginate with 5-fluorouracil during radiation therapy of healthy tumors of the cervix and rectum. RUSSIAN BIOTHERAPEUTIC JOURNAL, 1 (14), 95.
  49. Reshetov, I.V., Gusev, I.V., Shchedrin, M.A., Sukortseva, N.S., Bykov, I.I., Kurochkina, Yu.S., Gorokhov, K.R. (2018). Development of biopolymer complexes based on polysaccharides to stimulate the regulation of atypical repair of soft tissues, leading to volumetric replacement of defects in body cavities (acquired extensive deformations of soft tissues) // Russian Biotherapeutic Journal, 17 (S), 61-62.