Comparative Analysis of Bioelectrocatalytic Cytochrome P450 3A4 Systems

Main Article Content

P.I. Koroleva
V.V. Shumyantseva

Abstract

This article describes the approaches developed by the authors with the aim to increase the efficiency of electro enzymatic reactions catalyzed by cytochrome P450 3A4. A comparative analysis of cytochrome P450 3A4 systems was carried out during the formation of the functional complexes hemoprotein-flavin nucleotides as low-molecular models of NAD(P)H-dependent cytochrome P450 reductase. The formation of a productive enzyme-substrate complex before the stage ofaccepting electrons from the modified electrode was studied from the electocatalytic viewpoint. Incorporation of the enzyme into nanopores of different nature on the electrode (2D-3D transition) was also studied. The results on the electrochemical reduction of bactosomes as the functionally active models of the microsomal monooxygenase system are also considered. The electrochemical and electrocatalytic parameters of cytochrome P450 3A4 were compared for different models of the electrocatalytic generation of metabolites.

Article Details

How to Cite
Koroleva, P., & Shumyantseva, V. (2024). Comparative Analysis of Bioelectrocatalytic Cytochrome P450 3A4 Systems. Biomedical Chemistry: Research and Methods, 7(1), e00210. https://doi.org/10.18097/BMCRM00210
Section
PROTOCOLS OF EXPERIMENTS, USEFUL MODELS, PROGRAMS AND SERVICES

References

  1. Nikzad, N., Rafiee, M. (2024) Electrochemical Study of Drug Metabolism. Current Opinion in Electrochemistry, 101446. DOI
  2. Hara, Y., Nagaoka, S. (2019). Pravastatin (Pravachol, Mevalotin). In Drug Discovery in Japan (S. Nagaoka eds.) Springer, Singapore, pp. 35-49. DOI
  3. Mi, L., Wang, Z., Yang, W., Huan, C., Zhou, B., Hu, Y.; Liu, S. (2023) Cytochromes P450 in biosensing and biosynthesis applications: Recent progress and future perspectives. Trends in Analytical Chemistry, 158, 116791. DOI
  4. Klyushova, L.S.; Perepechaeva, M.L.; Grishanova, A.Y. (2022) The Role of CYP3A in Health and Disease. Biomedicines, 10, 2686. DOI
  5. Krishnan, S. (2020) Bioelectrodes for evaluating molecular therapeutic and toxicity properties. Current Opinion in Electrochemistry, 19, 20–26. DOI
  6. Di Nardo, G., Gilardi, G. (2020) Natural Compounds as Pharmaceuticals: The Key Role of Cytochromes P450 Reactivity. Trends in Biochemical Sciences, 45(6), 511-525. DOI
  7. Bernhardt, R., Urlacher, V.B. (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Applied Microbiology and Biotechnology, 98 (14), 6185–6203. DOI
  8. Sakaki, T. (2012) Practical application of cytochrome P450. Biological and Pharmaceutical Bulletin, 35(6), 844–849. DOI
  9. Sun, X., Sun, J., Ye, Y., Ji, J., Sheng, L., Yang, D., Sun, X. (2023) Metabolic pathway-based self-assembled Au@MXene liver microsome electrochemical biosensor for rapid screening of aflatoxin B1. Bioelectrochemistry, 151, 108378. DOI
  10. Shumyantseva, V.V., Kuzikov, A.V., Masamrekh, R.A., Bulko, T.V., Archakov, A.I. (2018) From electrochemistry to enzyme kinetics of cytochrome P450. Biosensors and Bioelectronics, 15, 192-204. DOI
  11. Schneider, E., Clark, D. S. (2013) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosensors and Bioelectronics, 39, 1-13, DOI
  12. Koroleva, P.I, Kuzikov, A.V., Masamrekh, R.A., Filimonov, D.A., Dmitriev, A.V., Zaviyalova, M.G., Rikova, S.M., Shich, E.V., Makhova, A.A., Bulko, T.V., Gilep, A.A., Shumyantseva, V.V. (2021) Modeling of drug-drug interactions between omeprazole and erythromycin in the cytochrome P450-dependent system in vitro. Biomeditsinskaya Khimiya, 15(1), 62–70. DOI
  13. Gilep, A.A., Guryev, O.V., Usanov, S.A., Estabrook, R.W. (2001) Reconstitution of the enzymatic activities of cytochrome P450s using recombinant flavocytochromes containing rat cytochrome b(5) fused to NADPH–cytochrome P450 reductase with various membrane-binding segments. Archives of Biochemistry and Biophysics, 390(2), 215–221. DOI
  14. Omura, T., Sato, R. (1964) The Carbon Monoxide-binding Pigment of Liver Microsomes: II. Solubilization, purification, and properties. Journal of Biological Chemistry, 239(7), 2379–2385. DOI
  15. Nash T. (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochemical Journal, 55(3), 416-421. DOI
  16. Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Chalenko, Y.M., Vagin, M.Y., Rudakov, Y.O., Shatskaya, M.A., Archakov, A.I. (2011) Electrochemical investigations of cytochromes P450. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1814(1), 94-101. DOI
  17. Ducharme, J., Auclair, K. (2018) Use of bioconjugation with cytochrome P450 enzymes, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1866(1), 32-51, DOI
  18. Shumyantseva, V.V., Bulko, T.V., Kuzikov, A.V., Archakov, A.I., Makhova, A.A., Shich, E.V., Kukes, V. (2015) Electrocatalytic cycle of P450 cytochromes: the protective and stimulating roles of antioxidants. RSC Advances, 5(87), 71306-71313. DOI
  19. Shumyantseva, V.V., Koroleva, P.I., Bulko, T.V., Sergeev, G.V., Usanov, S.A. (2022) Predicting drug-drug interactions by electrochemically driven cytochrome P450 3A4 reactions. Drug Metabolism and Personalized Therapy, 37(3), 241-248. DOI
  20. Shumyantseva, V.V., Bulko, T.V., Koroleva, P.I., Shikh, E.V., Makhova, A.A., Kisel, M.S., Haidukevich I.V., Gilep A.A. (2022) Human Cytochrome P450 2C9 and its polymorphic modifications: electroanalysis, catalytic properties, and approaches to the regulation of enzymatic activity. Processes, 10, 383. DOI
  21. Agafonova L.E., Bulko T.V., Kuzikov A.V., Masamrekh R.A., Shumyantseva V.V. (2022) Sensors for analysis of drugs, drug-drug interactions, and catalytic activity of enzymes. Bulletin of Russian State Medical University, 1, 41-46. DOI
  22. Kuzikov, A., Masamrekh, R., Shkel, T., Strushkevich, N., Gilep, A., Usanov, S., Archakov, A., Shumyantseva V. (2019) Assessment of electrocatalytic hydroxylase activity of cytochrome P450 3A4 (CYP3A4) by means of derivatization of 6β-hydroxycortisol by sulfuric acid for fluorimetric assay. Talanta, 196, 231–236. DOI
  23. Masamrekh, R.A., Kuzikov, A.V., Haurychenka, Y.I., Shcherbakov, K.A., Veselovsky, A.V., Filimonov, D.A., Dmitriev, A.V., Zavialova, M.G., Gilep, A.A., Shkel, T.V., Strushkevich, N.V., Usanov, S.A., Archakov, A.I., Shumyantseva V.V. (2020) In vitro interactions of abiraterone, erythromycin, and CYP3A4: implications for drug-drug interactions. Fundamental and Clinical Pharmacology, 34, 120-130. DOI
  24. Makhova, A.A., Shikh, E.V., Bulko, T.V., Gilep ,A.A., Usanov, S.A., Shumyantseva, V.V. (2020) No effect of lipoic acid on catalytic activity of cytochrome P450 3A4. Drug Metabolism and Personalized Therapy, 35(3), 20200105. DOI
  25. Masamrekh, R., Kuzikov, A., Veselovsky, A., Toropygin, I., Shkel, T., Strushkevich, N., Gilep, A., Usanov, S., Archakov, A., Shumyantseva, V. (2018) 17α-hydroxylase, 17(20)-lyase (CYP17A1) inhibitors – abiraterone and galeterone – interact with human sterol 14α-demethylase (CYP51A1). Journal of Inorganic Biochemistry, 186, 24–33. DOI
  26. Kuzikov, A.V., Bulko, T.V., Koroleva, P.I., Masamrekh, R.A., Babkina, S.S., Gilep, A.A., Shumyantseva, V.V. (2020) Cytochrome P450 3A4 as a Drug Metabolizing Enzyme: the Role of Sensor System Modifications in Electocatalysis and Electroanalysis. Biomeditsinskaya Khimiya, 14(3), 252–259. DOI
  27. Shumyantseva, V.V., Agafonova, L.E., Bulko, T.V., Kuzikov, A.V., Masamrekh, R.A., Yuan, Ji., Pergushov, D.V., Sigolaeva, L.V. (2021) Electroanalysis of Biomolecules: Rational Selection of Sensor Construction. Biochemistry (Moscow). Special issue. Biological Chemistry reviews, 86(Suppl.1), S140-S151. DOI
  28. Guengerich, F.P. (2021) Drug Metabolism: Cytochrome P450, In Reference Module in Biomedical Sciences, Elsevier, Netherlands. DOI
  29. Lamb, D.C., Waterman, M.R., Kelly, S.L., Guengerich, F.P. (2007) Cytochromes P450 and drug discovery. Current Opinion in Biotechnology, 18(6), 504-512. DOI
  30. Bavishi, K., Laursen, T., Martinez, K.L., Møller, B.L., Della Pia, E.A. (2016) Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase. Scientific Reports, 6, 29459. DOI
  31. Koroleva, P.I., Bulko, T.V., Agafonova, L.E., Shumyantseva, V.V. (2023) Catalytic and Electrocatalytic Mechanisms of Cytochromes P450 in the Development of Biosensors and Bioreactors. Biochemistry (Moscow), 88(10), 1645-1657. DOI
  32. Shumyantseva V.V., Koroleva P.I., Bulko T.V., Shkel T.V., Gilep A.A., Veselovsky A.V. (2023) Approaches for increasing the electrocatalytic efficiency of Cytochrome P450 3A4. Bioelectrochemistry, 149, 108277. DOI
  33. Rusling, F., Wang, B., Yun, S. (2008). Electrochemistry of redox enzymes, In Bioelectrochemistry: Fundametals, In Experimental Techniques and Applications (P.N. Bartlett ed.), John Wiley & Sons Ltd., New Jersey, pp. 39–85. DOI
  34. Gray, J.J. (2004) The interaction of proteins with solid surfaces. Current Opinion in Structural Biology, 14, 110-115. DOI
  35. Shumyantseva, V.V., Koroleva, P.I., Bulko, T.V., Agafonova, L.E. (2023) Alternative electron sources for cytochrome P450s catalytic cycle: biosensing and biosynthetic application. Processes, 11, 1801. DOI
  36. Shumyantseva, V.V., Kuzikov, A.V., Masamrekh, R.A., Philippova, T.A., Koroleva, P.I., Agafonova, L.E., Bulko, T. V., Archakov, A.I. (2022) Enzymology on an electrode and in a nanopore: analysis algorithms, enzyme kinetics and perspectives. BioNanoScience, 12, 1341-1355. DOI
  37. Shangguan, L., Wei, Y., Liu, X., Yu, J., Liu, S. (2017) Confining a bi-enzyme inside the nanochannels of a porous aluminum oxide membrane for accelerating the enzymatic reactions. Chemical Communications, 53, 2673-2676. DOI
  38. Mie, Y., Ikegami, M., Komatsu, Y. (2016) Nanoporous Structure of Gold Electrode Fabricated by Anodization and Its Efficacy for Direct Electrochemistry of Human Cytochrome P450. Chemistry Letters, 45, 640–642. DOI
  39. Dai, Q., Yang, L., Wang, Y., Cao, X., Yao, C., Xu, X. (2020) Surface charge-controlled electron transfer and catalytic behavior of immobilized cytochrome P450 BM3 inside dendritic mesoporous silica nanoparticles. Analytical and Bioanalytical Chemistry, 412, 4703-4712. DOI
  40. Xu, X., Zheng, Q., Bai, G., Dai, Q., Cao, X., Yao, Y., Liu, S., Yao, C. (2018) Polydopamine functionalized nanoporous graphene foam as nanoreactor for efficient electrode-driven metabolism of steroid hormones. Biosensors and Bioelectronics, 119, 182-190, DOI
  41. Lu, J., Li, H., Cui, D., Zhang, Y., Liu, S. (2014) Enhanced enzymatic reactivity for electrochemically driven drug metabolism by confining cytochrome P450 enzyme in TiO₂ nanotube arrays. Analytical Chemistry, 86, 8003–8009. DOI
  42. Meyer, N., Abrao-Nemeir, I., Janot, J.-M., Torrent, J, Lepoitevin, M, Balme, S (2021) Solid-state and polymer nanopores for protein sensing. Advances in Colloid and Interface Science, 298, 102561. DOI
  43. Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli, F., Walde, P. (2016) Enzymatic reactions in confined environments. Nature Nanotechnology, 11, 409-420. DOI
  44. González-Davis, O., Chauhan, K., Zapian-Merino, S., Vazquez-Duhalt, R. (2020) Bi-enzymatic virus-like bionanoreactors for the transformation of endocrine disruptor compounds. International Journal of Biological Macromolecules, 146, 415-421. DOI
  45. Kumar, R., Sharma, D., Kumar, V., Kumar, R. (2018) Factors defining the effects of macromolecular crowding on dynamics and thermodynamic stability of heme proteins in-vitro. Archives of Biochemistry and Biophysics, 654, 146–162. DOI
  46. Shumyantseva, V.V., Koroleva, P.I., Gilep, A.A., Napolskii, K.S., Ivanov, Yu.D., Kanashenko, S.L., Archakov, A.I. (2022) Increasing the efficiency of cytochrome P450 3A4 electrocatalysis using electrode modification with spatially ordered anodic aluminum oxide-based nanostructures for investigation of metabolic transformations of drugs. Doklady Biochemistry and Biophysics, 506, 215-219, DOI
  47. Koroleva, P.I., Gilep, A.A., Kraevskiy, S.V., Tsybruk, T.V., Shumyantseva, V.V. (2023) Improving the efficiency of electrocatalysis of cytochrome P450 3A4 by modifying the electrode with membrane protein streptolysin O for studying the metabolic transformations of drugs. Biosensors, 13, 457. DOI
  48. Nerimetla, R., Krishnan, S. (2015) Electrocatalysis by subcellular liver fractions bound to carbon nanostructures for stereoselective green drug metabolite synthesis. Chemical Communications, 51, 11681-11684. DOI
  49. Xu, X., Bai, G., Song, L., Zheng, Q., Yao, Y., Liu, S., Yao, C. (2017) Fast steroid hormone metabolism assays with electrochemical liver microsomal bioreactor based on polydopamine encapsulated gold-graphene nanocomposite. Electrochimica Acta, 258, 1365-1374. DOI
  50. Nerimetla, R., Premaratne, G., Liu, H., Krishnan, S. (2018) Improved electrocatalytic metabolite production and drug biosensing by human liver microsomes immobilized on amine-functionalized magnetic nanoparticles. Electrochimica Acta, 280, 101-107. DOI
  51. Nerimetla, R., Walgama, C., Singh, V., Hartson, S.D., Krishnan, S. (2017) Mechanistic insights on the voltage-driven biocatalysis of a cytochrome P450 bactosomal film on a self-assembled monolayer. ACS Catalysis, 7, 3446-3453. DOI
  52. Archakov, A.I. (1975) Microsomal oxidation. Nauka, Moscow, 327 p.
  53. Panicco, P., Castrignanò, S., Sadeghi, S.J., Di Nardo, G., Gilardi, G. (2021) Engineered human CYP2C9 and its main polymorphic variants for bioelectrochemical measurements of catalytic response. Bioelectrochemistry, 138, 107729. DOI
  54. Walgama, C., Nerimetla, R., Materer, N.F., Schildkraut, D., Elman, J.F., Krishnan, S. (2015) A Simple Construction of Electrochemical Liver Microsomal Bioreactor for Rapid Drug Metabolism and Inhibition Assays. Analytical Chemistry, 87(9), 4712–4718. DOI