Proteoform Identification in 2D Electrophoresis Maps by Using Isoelectric Point Prediction

Main Article Content

A.V. Rybina

Abstract

The possibility of identifying specific protein proteoforms with post-translational modifications (PTM) by analyzing two-dimensional (2D) gel electrophoresis maps and using the prediction of the isoelectric point of proteins (pI) has been investigated. The pI values were predicted using the pIPredict 3 program, supporting a wide range of chemical and post-translational modifications. Eleven 11 proteins (albumin, alpha-1-microglobulin, annexin A2, apolipoprotein E, gastric triacylglycerol lipase, mitochondrial isocitrate dehydrogenase, clusterin, plasmin, prothrombin, endoplasmic reticulum chaperone, S-adenosylmethionine synthase type 1) identified on six 2D electrophoresis maps were used as examples. Various options for selecting hypotheses are considered. These take into consideration the following available information about a particular protein: possible modification sites, processing features, variability of the amino acid composition. The obtained results indicate that the use of predicting the pI value for proteins with hypothetical PTMs can form a set of hypotheses about specific proteoform occurrence on 2D electrophoresis maps.

Article Details

How to Cite
Rybina, A. (2023). Proteoform Identification in 2D Electrophoresis Maps by Using Isoelectric Point Prediction. Biomedical Chemistry: Research and Methods, 6(1), e00191. https://doi.org/10.18097/BMCRM00191
Section
PROTOCOLS OF EXPERIMENTS, USEFUL MODELS, PROGRAMS AND SERVICES

References

  1. Knorre, D.G., Kudryashova, N.V., Godovikova, T.S. (2009) Chemical and functional aspects of posttranslational modification of proteins. Acta Naturae, 1(3), 29-51. DOI
  2. Kiseleva, O.I., Lisitsa, A.V., Poverennaya, E.V. (2018) Proteoforms: methods of analysis and clinical prospects. Molecular Biology, 52(3), 335-349. DOI
  3. Naryzhny, S.N., Legina, O.K. (2019) Structural-functional diversity of p53 proteoforms. Biomeditsinskaya Khimiya, 65(4), 263-276. DOI
  4. Rabilloud, T., Charmont, S. (2000) Detection of proteins on two-dimensional electrophoresis gels. in proteome research: two-dimensional gel electrophoresis and identification methods. Principles and practice (T. Rabilloud eds), Springer, Berlin, Heidelberg, pp. 107-126. DOI
  5. Skvortsov, V.S., Ivanova, Ya.O., Voronina, A.I. (2021) The bioinformatic identification of proteins with varying levels of post-translational modifications in experimental ischemic stroke in mice. Biomeditsinskaya Khimiya, 67(6), 475-484. DOI
  6. Skvortsov, V.S., Voronina, A.I., Ivanova, Y.O., Rybina, A.V. (2021) The prediction of the isoelectric point value of peptides and proteins with a wide range of chemical modifications. Biomedical Chemistry: Research and Methods, 4(4), e00161. DOI
  7. Po, H.N., Senozan, N.M. (2001) The Henderson- Hasselbalch equation: its history and limitations. Journal of Chemical Education, 78, 1499-1503. DOI
  8. Halligan, B.D., Ruotti, V., Jin, W., Laffoon, S., Twigger, S.N., Dratz, E.A. (2004) ProMoST (protein modification screening tool): a web-based tool for mapping protein modifications on two-dimensional gels. Nucleic Acids Research, 32(suppl_2), W638-W644. DOI
  9. Frolov, A.I., Chankeshwara, S.V., Abdulkarim, Z., Ghiandoni, G.M. (2023) pIChemiSt ─ free tool for the calculation of isoelectric points of modified peptides. Journal of Chemical Information and Modeling, 63(1), 187-196. DOI
  10. Hoogland, C., Mostaguir, K., Appel, R.D., Lisacek, F. (2008) The World-2DPAGE constellation to promote and publish gel-base d proteomics data through the ExPASy server. Journal of Proteomics, 71(2), 245-248. DOI
  11. Naryzhny, S., Ronzhina, N., Zorina, E., Kabachenko, F., Klopov, N., Zgoda, V. (2022) Construction of 2DE patterns of plasma proteins: aspect of potential tumor markers. International Journal of Molecular Sciences, 23(19), 11113. DOI
  12. The UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480-D489. DOI
  13. Repetto, O., De Re, V., Giuffrida, P., Lenti, M.V., Magris, R., Venerito, M., Steffan, A., Di Sabatino, A., Cannizzaro, R. (2021) Proteomics signature of autoimmune atrophic gastritis: towards a link with gastric cancer. Gastric Cancer, 24(3), 666-679. DOI
  14. Kamata, S., Yamamoto, J., Ohtani, H., Tosaka, Y., Yoshikawa, S., Akahoshi, N., Ishii, I. (2018) 2D DIGE proteomic analysis reveals fasting-induced protein remodeling through organ-specific transcription factor(s) in mice. FEBS Open Bio, 8(9), 1524-1543. DOI
  15. D'Hertog, W., Maris, M., Thorrez, L., Waelkens, E., Overbergh, L., Mathieu, C. (2011) Two-dimensional gel proteome reference map of INS-1E cells. Proteomics, 11(7), 1365-1369. DOI
  16. Golaz, O., Hughes, G. J., Frutiger, S., Paquet, N., Bairoch, A., Pasquali, C., Sanchez, J. C., Tissot, J. D., Appel, R. D., Walzer, C. (1993) Plasma and red blood cell protein maps: update 1993. Electrophoresis, 14(11), 1223-1231. DOI
  17. Sanchez, J.C., Appel, R.D., Golaz, O., Pasquali, C., Ravier, F., Bairoch, A., Hochstrasser, D.F. (1995) Inside SWISS-2DPAGE database. Electrophoresis, 16(7), 1131-1151. DOI
  18. Skvortsov, V.S., Rybina, A.V. (2022) The filtration of 2D electrophoresis data during creation of a learning set for prediction of the value of the isoelectric point of proteins. Biomedical Chemistry: Research and Methods, 5(1), e00162. DOI
  19. Rath, A., Glibowicka, M., Nadeau, V.G., Chen, G., Deber, C.M. (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proceedings of the National Academy of Sciences, 106(6), 1760-1765. DOI
  20. Sokolnikov, A.A., Kodentsova, V.M. (1999) Functional role of vitamin K. Voprosy Meditsinskoi Khimii, 45(6), 453-461.