Heterologous Expression of Recombinant L-asparaginase Genes
Main Article Content
Abstract
L-asparaginase (EC 3.5.1.1.) is the enzyme with the highest level of global production and is used in the treatment of cancer and in the food industry. Different expression systems are used for the production of many target proteins, ranging from cell-free to hyperproductive plant, insect, bacterial and mammalian cells. This review attempts to bring together the available literature data on heterologous gene expression and technology for the production of recombinant L-asparaginases.
Article Details
How to Cite
Pokrovskaya, M., Alexandrova, S., Pokrovsky, V., Dobryakova, N., Shishparenok, A., Gladilina, Y., & Zhdanov, D. (2025). Heterologous Expression of Recombinant L-asparaginase Genes. Biomedical Chemistry: Research and Methods, 8(4), e00265. https://doi.org/10.18097/BMCRM00265
Section
REVIEWS
References
- Loch, J., Jaskolski, M. (2021) Structural and biophysical aspects of L-asparaginases: A growing family with amazing diversity. IUCrJ, 8 (4), 514-531. DOI
- Brumano, L., da Silva, F.V.S., Costa-Silva, T., Apolinário, A., Santos, J., Kleingesinds, E., Monteiro, G., Rangel-Yagui, C., Benyahia, B., Junior, A. (2019) Development of L-asparaginase biobetters: current research status and review of the desirable quality profiles. Frontiers in bioengineering and biotechnology, 10(6), 212. DOI
- Cachumba, J.J., Antunes, F.A., Peres, G.F., Brumano, L.P., Santos, J.C., Da Silva, S.S. (2016) Current applications and different approaches for microbial L-asparaginase production. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 47 (Suppl 1), 77-85. DOI
- Eisele, N., Linke, D., Bitzer, K., Na’amnieh, S., Nimtz, M., Berger, R. (2011) The first characterized asparaginase from a basidiomycete, Flammulina velutipes. Bioresource technology, 102(3), 3316-3321. DOI
- Jha, S. K., Pasrija, D., Sinha, R., Singh, H.R., Nigam, V., Vidyarthi, A. (2012) Microbial L-asparaginase: a review on current scenario and future prospects. International Journal of Pharmaceutical Sciences and Research, 3(9), 3076- 3090. DOI
- Dumina, M., Zhgun, A., Pokrovskaya, M., Aleksandrova, S., Zhdanov, D., Sokolov, N., El’darov, M. (2021) Highly active thermophilic L-asparaginase from Melioribacter roseus represents a novel large group of type II bacterial L-asparaginases from chlorobi-ignavibacteriae-bacteroidetes clade. International journal of molecular sciences, 22(24), 13632. DOI
- Mahajan, R.V., Kumar, V., Rajendran, V., Saran, S., Ghosh, P.C., Saxena, R.K. (2014) Purification and characterization of a novel and robust L-asparaginase having low-glutaminase activity from Bacillus licheniformis: in vitro evaluation of anti-cancerous properties. PLoS One, 9(6):e99037. DOI
- Sarquis, M.I., Oliveira, E.M., Santos, A.S., Costa, G.L. (2004) Production of L-asparaginase by filamentous fungi. Memorias do Instituto Oswaldo Cruz. 99(5), 489-492. DOI
- da Cunha, M.C, Dos Santos, Aguilar, J.G., de Melo, R.R., Nagamatsu, S.T., Ali, F., de Castro, R.J.S., Sato, H.H. (2019) Fungal L-asparaginase: Strategies for production and food applications. Food research international, 126, 108658. DOI
- Saleh, A.A., El-Aref, H.M., Ezzeldin, A.M., Ewida R.M., Bedak, O.A.Al. (2025) L-asparaginase from the novel Fusarium falciforme AUMC 16563: extraction, purification, characterization, and cytotoxic effects on PC-3, HePG- 2, HCT-116, and MCF-7 cell lines. BMC microbiology, 25(1), 145. DOI
- Casado, A., Caballero, J.L., Franco, A.R., Cárdenas, J., Grant, M.R., Muñoz-Blanco, J. (1995) Molecular cloning of the gene encoding the L-asparaginase gene of Arabidopsis thaliana. Plant physiology, 108(3), 1321- 1322. DOI
- Sharma, A., Kaushik., V., Goel, M. (2022) Insights into the distribution and functional properties of L-asparaginase in the Archaeal domain and characterization of Picrophilus torridus asparaginase belonging to the novel family Asp2like1. ACS Omega, 7(45), 40750-40765. DOI
- Broome, J.D. (1965) Antilymphoma activity of L-asparaginase in vivo: clearance rates of enzyme preparations from guinea pig serum and yeast in relation to their effect on tumor growth. Journal of the National Cancer Institute. 35(6), 967-974. DOI
- Lopes, A.M., Oliveira-Nascimento, L., Ribeiro, A., Tairum, C.A. Jr., Breyer, C.A., Oliveira, M.A., Monteiro, G., Souza-Motta, C.M., Magalhães, P.O., Avendaño, J.G., Cavaco-Paulo, A.M., Mazzola, P.G., Rangel-Yagui, C.O., Sette, L.D., Converti, A., Pessoa, A. (2017) Therapeutic L-asparaginase: upstream, downstream and beyond. Critical reviews in biotechnology, 37(1), 82-99. DOI
- Bosmann, H.B., Kessel, D. (1970) Inhibition of glycoprotein synthesis in L5178Y mouse leukaemic cells by L-asparaginase in vitro. Nature. 226(5248), 850-851. DOI
- Bejger, M., Imiolczyk, B., Clavel, D., Gilski, M., Pajak, A., Marsolais, F., Jaskolski, M. (2014) Na⁺/K⁺ exchange switches the catalytic apparatus of potassium-dependent plant L-asparaginase. Acta crystallographica. Section D, Biological crystallography, 70(Pt 7),1854-1872. DOI
- Vimal, A., Kumar, A. (2020) Antimicrobial potency evaluation of free and immobilized L-asparaginase using chitosan nanoparticles. Journal of Drug Delivery Science and Technology. 61(6), 102231. DOI
- Vimal, A., Kumar, A. (2022) L-asparaginase: Need for an expedition from an enzymatic molecule to antimicrobial drug. International journal of peptide research and therapeutics. 28(1), 9. DOI
- Zielezinski, A., Loch, J.I., Karlowski, W.M., Jaskolski, M. (2022) Massive annotation of bacterial L-asparaginases reveals their puzzling distribution and frequent gene transfer events. Scientific reports.12(1),15797. DOI
- Abd El-Baky, H.H., El-Baroty, G.S. (2020) Spirulina maxima L-asparaginase: immobilization, antiviral and antiproliferation activities. Recent patents on biotechnology, 14(2), 154-163. DOI
- Vimal, A., Kumar, A. (2018) L-Asparaginase: a feasible therapeutic molecule for multiple diseases. 3 Biotech, 8(6), 278. DOI
- Darvishi, F., Jahanafrooz, Z., Mokhtarzadeh, A. (2022) Microbial L-asparaginase as a promising enzyme for treatment of various cancers. Applied microbiology and biotechnology, 106(17), 5335-5347. DOI
- Ściuk, A., Wątor, K., Staroń, I., Worsztynowicz, P., Pokrywka, K., Sliwiak, J., Kilichowska, M., Pietruszewska, K., Mazurek, Z., Skalniak, A., Lewandowski, K., Jaskolski, M., Loch, J.I., Surmiak, M. (2024). Substrate affinity is not crucial for therapeutic L-asparaginases: antileukemic activity of novel bacterial enzymes. Molecules (Basel, Switzerland), 29(10), 2272. DOI
- Wang, N., Ji, W., Wang, L., Wu, W., Zhang, W., Wu, Q., Du, W., Bai, H., Peng, B., Ma, B., Li, L. (2022) Overview of the structure, side effects, and activity assays of L-asparaginase as a therapy drug of acute lymphoblastic leukemia. RSC medicinal chemistry, 13(2), 117-128. DOI
- Patel, P., Panseriya, H., Vala, A.K., Dave, B.P., Gosai, H. (2022). Exploring current scenario and developments in the field of microbial L-asparaginase production and applications: A review. Process Biochemistry, 121, 529-541. DOI
- Xu, F., Oruna-Concha, M.J., Elmore, J.S. (2016) The use of asparaginase to reduce acrylamide levels in cooked food. Food chemistry. 210, 163-171. DOI
- Santos, J.H.P.M., Costa, I.M., Molino, J.V.D., Leite, M.S.M., Pimenta, M.V., Coutinho, J.A.P., Pessoa, A.Jr., Ventura, S.P.M., Lopes, A.M., Monteiro, G. (2017) Heterologous expression and purification of active L-asparaginase I of Saccharomyces cerevisiae in E. coli host. Biotechnology progress, 33(2), 416- 424. DOI
- Tekoah, Y., Shulman, A., Kizhner, T., Ruderfer, I., Fux, L., Nataf, Y., Bartfeld, D., Ariel, T., Gingis-Velitski, S., Hanania, U., Shaaltiel, Y. (2015) Largescale production of pharmaceutical proteins in plant cell culture-the Protalix experience. Plant biotechnology journal. 13(8), 1199-1208. DOI
- Zhu, J. (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnology advances, 30(5), 1158-1170. DOI
- Zhang, X. Wang, Z., Wang, Y., Li, X., Zhu, M., Zhang, H., Xu, M., Yang, T., Rao, Z. (2021) Heterologous expression and rational design of L-asparaginase from Rhizomucor miehei to improve thermostability. Biology, 10(12), 1346. DOI
- Lefin, N., Miranda, J., Beltrán, J.F., Belén, L.H., Effer, B., Pessoa, A. Jr., Farias, J.G., Zamorano, M. (2023) Current state of molecular and metabolic strategies for the improvement of L-asparaginase expression in heterologous systems. Frontiers in pharmacology, 14, 1208277. DOI
- Yang, X., Rao, Y., Zhang, M., Wang, J., Liu, W., Cai, D., Chen, S. (2023) Efficient production of L-asparaginase in Bacillus licheniformis by optimizing expression elements and host. Chinese journal of biotechnology, 39(3), 1096- 1106. DOI
- Li, X., Xu, S., Zhang, X., Xu, M., Yang, T., Wang, L., Zhang, H., Fang, H., Osire, T., Yang, S., Rao, Z. ( 2019) Design of a high-efficiency synthetic system for L-asparaginase production in Bacillus subtilis. Engineering in life sciences, 19(3), 229-239. DOI
- Costa-Silva, T.A., Camacho-Córdova, D.I., Agamez-Montalvo, G.S., Parizotto, L.A., Sánchez-Moguel, I., Pessoa-Jr, A. (2019) Optimization of culture conditions and bench-scale production of anticancer enzyme L-asparaginase by submerged fermentation from Aspergillus terreus CCT 7693. Preparative biochemistry & biotechnology, 49(1), 95-104. DOI
- Sharma, D., Mishra, A. (2023) Synergistic effects of ternary mixture formulation and process parameters optimization in a sequential approach for enhanced L-asparaginase production using agro-industrial wastes. Environmental science and pollution research international, 31(12), 1-16. DOI
- Poluri, K.M., Gulati, K. (2017) Rational designing of novel proteins through computational approaches. In: Protein engineering techniques.Springer Briefs in Applied Sciences and Technology. Springer Singapore. pp. 61-83. DOI
- Praveen, P. (2019). Modeling and validation of L-asparaginase enzyme, an anticancer agent using the tools of computational biology. International Journal of Research in Medical Sciences, 8(1), 211-214, DOI
- Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., Sternberg, M.J. (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nature protocols, 10(6), 845-858. DOI
- Gileadi, O. (2017) Recombinant protein expression in E. coli : A historical perspective. Methods in molecular biology, 1586, 3-10. DOI
- Saberianfar, R., Menassa, R. (2018) Strategies to increase expression and accumulation of recombinant proteins. In: Molecular Pharming: Applications, Challenges, and Emerging Areas. ( A.R. Kermode and L. Jiang eds.) New York. pp. 119-135. DOI
- Shishparenok, A.N., Gladilina, Y.A., Zhdanov, D.D. (2023) Engineering and expression strategies for optimization of L-asparaginase development and production. International journal of molecular sciences, 24(20),15220. DOI
- Miranda, J., Lefin, N., Beltran, J., Belén, L.H., Tsipa, A., Farias, J.G., Zamorano, M. (2023) Enzyme engineering strategies for the bioenhancement of L-asparaginase used as a biopharmaceutical. BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy, 37(6), 793-811. DOI
- Borek, D., Jaskólski, M. (2001) Sequence analysis of enzymes with asparaginase activity. Acta biochimica Polonica, 48(4), 893-902. DOI
- Michalska, K., Jaskolski, M. (2006). Structural aspects of L-asparaginases, their friends and relations. Acta biochimica Polonica, 53 (4), 627-640. DOI
- Castro, D., Marques, A., Almeida, M.R., de Paiva, G.B., Bento, H.B.S., Pedrolli, D.B., Freire, M.G., Tavares, A.P.M., Santos-Ebinuma, V.C. (2021) L-asparaginase production review: bioprocess design and biochemical characteristics. Applied microbiology and biotechnology, 105(11), 4515-4534. DOI
- Bonthron, D.T., Jaskólski, M. (1997) Why a “benign” mutation kills enzyme activity. Structure-based analysis of the A176V mutant of Saccharomyces cerevisiae L-asparaginase I. Acta biochimica Polonica, 44(3), 491-504. DOI
- Lubkowski, J., Wlodawer, A. (2021) Structural and biochemical properties of L-asparaginase. The FEBS journal, 288(14), 4183-4209. DOI
- da Silva, L.S., Doonan, L.B., Pessoa, A. Jr., de Oliveira, M.A., Long, P.F. (2022) Structural and functional diversity of asparaginases: Overview and recommendations for a revised nomenclature. Biotechnology and applied biochemistry, 69(2), 503-513. DOI
- Yun, M.K., Nourse, A., White, S.W., Rock, C.O., Heath, R.J. (2007) Crystal structure and allosteric regulation of the cytoplasmic E. coli L-asparaginase I. Journal of molecular biology, 369(3), 794-811. DOI
- Jennings, M.P., Beacham, I.R. (1993) Co-dependent positive regulation of the ansB promoter of E. coli by CRP and the FNR protein: a molecular analysis. Molecular microbiology, 9(1), 155-64. DOI
- Dunlop, P.C., Meyer, G.M., Ban, D., Roon, R.J. (1978) Characterization of two forms of asparaginase in Saccharomyces cerevisiae. The Journal of biological chemistry, 253(4), 1297-1304. DOI
- Dumina, M., Zhgun, A. (2023) Thermo-L-asparaginases: from the role in the viability of thermophiles and hyperthermophiles at high temperatures to a molecular understanding of their thermoactivity and thermostability. International journal of molecular sciences, 24(3), 2674. DOI
- Pokrovskaya, M.V., Pokrovsky, V.S., Aleksandrova, S.S., Sokolov, N.N., Zhdanov, D.D. (2022) Molecular analysis of L-asparaginases for clarification of the mechanism of action and optimization of pharmacological functions. Pharmaceutics, 14(3), 599. DOI
- Kotzia, G.A., Lappa, K., Labrou, N.E. ( 2007) Tailoring structure-function properties of L-asparaginase: engineering resistance to trypsin cleavage. The Biochemical journal, 404(2), 337-343. DOI
- Gesto, D.S., Cerqueira, N.M., Fernandes, P.A., Ramos, M.J. (2013) Unraveling the Enigmatic Mechanism of L-asparaginase II with Q M/QM Calculations. Journal of the American Chemical Society, 135(19), 7146-7158. DOI
- Aghaiypour, K., Wlodawer, A., Lubkowski, J. (2001) Structural basis for the activity and substrate specificity of Erwinia chrysanthemi L-asparaginase. Biochemistry, 40(19), 5655-5664. DOI
- Upadhyay, A.K., Singh, A., Mukherjee, K.J., Panda, A.K. (2014) Refolding and purification of recombinant L-asparaginase from inclusion bodies of E. coli into active tetrameric protein. Frontiers in Microbiology, 5, 486. DOI
- Maurizi, M.R. (1992) Proteases and protein degradation in Escherichia coli. Experientia, 48(2), 178-201. DOI
- Wülfing, C., Plückthun, A. (1994) Protein folding in the periplasm of Escherichia coli. Molecular microbiology, 12(5), 685-692. DOI
- Papageorgiou, A.C., Posypanova, G.A., Andersson, C.S., Sokolov, N.N., Krasotkina, J. (2008) Structural and functional insights into Erwinia carotovora L-asparaginase. The FEBS journal, 275(17), 4306-4316. DOI
- Swain, A.L., Jaskólski, M., Housset, D., Rao, J.K., Wlodawer, A. (1993) Crystal structure of Escherichia coli L-asparaginase, an enzyme used in cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 90(4), 1474-1478. DOI
- Pokrovskaya, M.V., Pokrovskiy, V.S., Aleksandrova, S.S, Anisimova, N.Iu., Andrianov, R.M., Treschalina, E.M., Ponomarev, G.V., Sokolov, N.N. (2013). Recombinant intracellular Rhodospirillum rubrum L-asparaginase with low L-glutaminase activity and antiproliferative effect. Biomeditsinskaia Khimiia, 59(2), 192-208. DOI
- Palm, G.J., Lubkowski, J., Derst, C., Schleper, S., Röhm, K.H., Wlodawer, A. (1996) A covalently bound catalytic intermediate in Escherichia coli asparaginase: crystal structure of a Thr-89-Val mutant. FEBS letters, 390(2), 211-216. DOI
- El-Ghonemy, D. (2014) Microbial amidases and their industrial applications: A review. Journal of Medical Microbiology and Diagnosis, 4, 1-6. DOI
- Borek, D., Kozak, M., Pei, J., Jaskolski, M. (2014) Crystal structure of active site mutant of antileukemic L-asparaginase reveals conserved zinc-binding site. The FEBS journal, 81(18), 4097-4111. DOI
- Nguyen, H.A., Su, Y., Lavie, A. (2016) Design and characterization of Erwinia chrysanthemi L-asparaginase variants with diminished L-glutaminase activity. The Journal of biological chemistry, 291(34), 17664-17676. DOI
- Nguyen, H.A, Su, Y., Lavie, A. (2016) Structural insight into substrate selectivity of Erwinia chrysanthemi L-asparaginase. Biochemistry, 55(8), 1246- 1253. DOI
- Nguyen, H.A., Durden, D.L., Lavie, A. (2017) The differential ability of asparagine and glutamine in promoting the closed/active enzyme conformation rationalizes the Wolinella succinogenes L-asparaginase substrate specificity. Scientific reports, 7, 41643. DOI
- Lubkowski, J., Wlodawer, A. (2019) Geometric considerations support the double-displacement catalytic mechanism of L-asparaginase. Protein science: a publication of the Protein Society, 28(10), 1850-1864. DOI
- Lubkowski, J., Vanegas, J.M., Chan, W.K., Lorenzi, P., Weinstein, J., Sukharev, S., Fushman, D., Rempe, S., Anishkin, A., Wlodawer, A. (2020) Mechanism of catalysis by L-asparaginase. Biochemistry, 59(20), 1927-1945. DOI
- Min Yao, Yoshiaki Yasutake, Hazuki Morita, Isao Tanaka. Structure of the type I L-asparaginase from the hyperthermophilic archaeon Pyrococcus horikoshii at 2.16 A resolution Acta Crystallographica Section D: Structural Biology (2005) 61(Pt 3):294-301. DOI
- Tomar, R., Garg, D.K., Mishra, R., Thakur, A.K., Kundu, B. (2013) N-terminal domain of Pyrococcus furiosus L-asparaginase functions as a nonspecific, stable, molecular chaperone. The FEBS journal, 280(11), 2688-2699. DOI
- Pritsa, A.A., Kyriakidis, D.A. (2001) L-asparaginase of Thermus thermophilus: Purification, properties and identification of essential amino acids for its catalytic activity. Molecular and cellular biochemistry, 216 (1-2), 93-101. DOI
- Derst, C., Henseling, J., Röhm, K.H. (1992) Probing the role of threonine and serine residues of E. coli asparaginase II by site-specific mutagenesis. Protein engineering, 5(8), 785-789. DOI
- Derst, C., Henseling, J., Röhm, K.H. (2000) Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein science: a publication of the Protein Society, 9(10), 2009-2017. DOI
- Derst, C., Wehner, A., Specht, V., Röhm, K.H. (1994) States and functions of tyrosine residues in Escherichia coli asparaginase II. European journal of biochemistry, 224(2), 533-540. DOI
- Bansal, S., Srivastava, A., Mukherjee, G., Pandey, R., Verma, A.,K. Mishra, P., Kundu, B. (2012) Hyperthermophilic asparaginase mutants with enhanced substrate affinity and antineoplastic activity: structural insights on their mechanism of action. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 26(3), 1161-1171. DOI
- Offman, M.N., Krol, M., Patel, N., Krishnan, S., Liu, J., Saha, V., Bates, P.A. (2011) Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity. Blood. 117(5), 1614-1621. DOI
- Costa, I.M., Schultz, L., de Araujo Bianchi, P.B., Leite, M.S., Farsky, S.H., de Oliveira, M.A., Pessoa, A., Monteiro, G. (2016) Recombinant L-asparaginase ׀ from Saccharomyces cerevisiae: an allosteric enzyme with antineoplastic activity. Scientific reports, 6(1), 36239. DOI
- Karamitros, C.S., Konrad, M. (2014) Bacterial co-expression of the α and β protomers of human L-asparaginase-3: Achieving essential N-terminal exposure of a catalytically critical threonine located in the β-subunit. Protein expression and purification, 93, 1-10. DOI
- Karamitros, C.S., Konrad, M. (2014) Human 60-kDa lysophospholipase contains an N-terminal L-asparaginase domain that is allosterically regulated by L-asparagine. The Journal of biological chemistry, 289(19), 12962-12975. DOI
- Maqsood, B., Basit. A., Khurshid, M., Bashir, Q. (2020) Characterization of a thermostable, allosteric L-asparaginase from Anoxybacillus flavithermus. International journal of biological macromolecules, 152, 584-592. DOI
- Mihooliya, K.N., Nitika, N., Bhambure, R., Rathore, A. (2022) Post-refolding stability considerations for optimization of in-vitro refolding: L-asparaginase as a case study. Biotechnology journal, 18(4), 2200505. DOI
- Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., Serrano, L. (2005) The FoldX web server: an online force field. Nucleic acids research, 33(Web Server issue):W382-8. DOI
- Dastmalchi, M., Alizadeh, M., Jamshidi-Kandjan, O., Rezazadeh, H., Hamzeh-Mivehroud, M., Farajollahi, M.M., Dastmalchi, S. (2023) Expression and biological evaluation of an engineered recombinant L-asparaginase designed by In Silico method based on sequence of the enzyme from Escherichia coli. Advanced pharmaceutical bulletin, 13(4), 827-836. DOI
- Goyal, G., Bhatt, V.R. (2015) L-asparaginase and venous thromboembolism in acute lymphocytic leukemia. Future oncology (London, England), 11(17), 2459-2470. DOI
- Schmiegelow, K., Attarbaschi, A., Barzilai, S., Escherich, G., Frandsen, T., Halsey, C.,Hough, R., Jeha, S., Kato, M., Liang, D.C., Mikkelsen, T.S., Möricke, A., Niinimäki, R., Piette, C., Putti, M.C., Raetz, E., Silverman, L.B., Skinner, R., Tuckuviene, R., van der Sluis, I., Zapotocka, E. (2016) Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: A delphi consensus. The Lancet. Oncology, 17 (6), e231–e239. DOI
- Zhang, Z.X., Nong, F.T., Wang, Y.Z, Yan, C.-X., Gu, Y., Song, P., Sun, X.M. (2022) Strategies for efficient production of recombinant proteins in Escherichia coli: alleviating the host burden and enhancing protein activity. Microbial Cell Factories, 21(1), 191. DOI
- Zhang, S., Sun, Y., Zhang, L., Zhang, F., Gao, W. (2023) Thermoresponsive polypeptide fused L-asparaginase with mitigated immunogenicity and enhanced efficacy in treating hematologic malignancies. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 10(23):e2300469. DOI
- Zhang, W., Dai, Q., Huang, Z., Xu, W. (2023) Identiication and thermostability modification of the mesophilic L-asparaginase from Limosilactobacillus secaliphilus. Applied biochemistry and biotechnology, 196(6), 1-15. DOI
- Kishore, V., Nishita, K.P., Manonmani, H.K. (2015) Cloning, expression and characterization of L-asparaginase from Pseudomonas fluorescens for large scale production in E. coli BL21. 3 Biotech. 5(6), 975-981. DOI
- Wang, Y., Xu, W., Wu, H., Zhang, W., Guang, C., Mu, W. (2021) Microbial production, molecular modification, and practical application of L-Asparaginase: A review. International journal of biological macromolecules, 186, 975-983. DOI
- Pokrovskaya, M.V., Aleksandrova, S.S., Pokrovsky, V.S., Omeljanjuk, N.M., Borisova A.A., Anisimova, N.Y., Sokolov, N.N. (2012) Cloning, expression and characterization of the recombinant Yersinia pseudotuberculosis L-asparaginase. Protein expression and purification, 82(1), 150-154. DOI
- Maggi, M., Mittelman, S.D., Parmentier, J.H., Colombo, G., Meli, M., Whitmire, J.M., Merrell, D.S., Whitelegge, J., Scotti, C. (2017) A proteaseresistant Escherichia coli asparaginase with outstanding stability and enhanced anti-leukaemic activity in vitro. Scientific reports, 7(1), 14479. DOI
- Mahboobi, M., Salmanian, A.H., Sedighian, H., Bambai, B. (2023) Molecular modeling and optimization of type II E.coli L-asparginase activity by in silico design and in vitro site-directed mutagenesis. The protein journal, 42(6), 664-674. DOI
- Mahboobi, M., Sedighian, H., Hedayati, M., Bambai, B., Saeed, E., Soofian, A.J. (2017) Applying bioinformatic tools for modeling and modifying type II E.coli L-asparginase to present a better therapeutic agent/drug for acute lymphoblastic leukemia. International Journal of Cancer Management, 10(3), e5785. DOI
- Ln, R., Doble, M., Rekha, V.P., Pulicherla, K.K. (2011) In silico engineering of L-asparaginase to have reduced glutaminase side activity for effective treatment of acute lymphoblastic leukemia. Journal of pediatric hematology/ oncology, 33(8), 617-621. DOI
- Ardalan, N., Akhavan, S.A., Khavari-Nejad, R. (2021) Development of Escherichia coli asparaginase II for the treatment of acute lymphocytic leukemia: in silico reduction of asparaginase II side effects by a novel mutant (V27F). Asian Pacific journal of cancer prevention: APJCP, 22(4), 1137-1147. DOI
- Song, Z., Zhang, Q., Wu, W., Pu, Z., Yu, H. (2023) Rational design of enzyme activity and enantioselectivity. Frontiers in bioengineering and biotechnology, 11, 1129149. DOI
- Korendovych, I.V. (2018) Rational and semirational protein design. Methods in molecular biology, 1685, 15-23. DOI
