Some Methods for Managing the Degradation of Biomedical Implantable Materials Based on Collagen and Hyaluronic Acid
Main Article Content
Abstract
The review considers modern approaches to modifying the in vitro degradation kinetics of implantable matrices based on collagen and hyaluronic acid. It includes data presented in 24 of approximately one hundred articles on similar topics found. Special attention is paid to the effect of polymer additives in collagen- and hyaluronic acid-based materials on their degradation rates in hydrolytic and enzymatic environments. The mechanisms of interaction of components and the impact of their structure on degradation processes are described. Approaches to the development of implantable medical devices based on biopolymers with controlled degradation and biocompatibility properties are proposed.
Article Details
How to Cite
Rudik, I., Vasiliev, A., Mironov, A., Kuznetsova, V., & Losev, F. (2025). Some Methods for Managing the Degradation of Biomedical Implantable Materials Based on Collagen and Hyaluronic Acid. Biomedical Chemistry: Research and Methods, 8(4), e00289. https://doi.org/10.18097/BMCRM00289
Section
REVIEWS
References
- Gubochkina, A.A., Legonkova, O.A. (2023) Bioresorbable bone materials: status in the Russian Federation. Microelements in Medicine, 24(4), 3-18. DOI
- Vasilyev, A.V., Kuznetsova, V.S., Bukharova, T.B., Grigoriev, T.E., Zagoskin, Yu.D., Korolenkova, M.V., Zorina, O.A., Chvalun, S.N., Goldshtein, D.V., Kulakov, A.A. (2020) Development prospects of curable osteoplastic materials in dentistry and maxillofacial surgery. Heliyon, 6, e04686. DOI
- Lykoshin, D.D., Zaitsev, V.V., Kostromina, M.A., Esipov, R.S. (2021) New generation osteoplastic materials based on biological and synthetic matrices. Fine chemical technologies, 16(1), 36-54. DOI
- Kuznetsova, V.S., Vasiliev, A.V., Grigoriev, T.E., Zagoskin, Yu.D., Chvalun, S.N., Bukharova, T.B., Goldstein, D.V., Kulakov, A.A. (2017) Prospects for using hydrogels as a basis for curable bone-plastic materials. Dentistry, 96(6), 68-74. DOI
- Vasiliev, A.V., Kuznetsova, V.S., Galitsyna, E.V., Bukharova, T.B., Osidak, E.O., Fatkhudinova, N.L., Leonov, G.E., Babichenko, I.I., Domogatsky, S.P., Goldstein, D.V., Kulakov, A.A. (2019) Biocompatibility and osteogenic properties of collagen-fibronectin hydrogel impregnated with BMP-2. Dentistry, 98(6-2), 5-11. DOI
- Vasilyev, A.V., Kuznetsova, V.S., Bukharova, T.B., Osidak, E.O., Grigoriev, T.E., Zagoskin, Y.D., Nedorubova, I.A., Domogatsky, S.P., Babichenko, I.I., Zorina, O.A., Kutsev, S.I., Chvalun, S.N., Kulakov, A.A., Losev, F.F., Goldshtein, D.V. (2021) Osteoinductive moldable and curable bone substitutes based on collagen, BMP-2 and highly porous polylactide granules, or a mix of HAP/β- TCP. Polymers, 13(22), 3974. DOI
- Possessor, A.D., Badalyan, V.A., Vasiliev, A.V. (2024) Results of increasing the thickness of soft tissues after using collagen matrices and connective tissue grafts. Dentistry, 103(6-2), 29-32. DOI
- Slovikova, A., Vojtova, L., Jancar, J. (2008) Preparation and modification of collagen-based porous scaffold for tissue engineering. Chemical Papers, 62(4), 417-422. DOI
- Lamparelli, E.P., Casagranda, V., Pressato, D., Maffulli, N., Della Porta, G., Bellini, D. (2022) Synthesis and characterization of a novel composite scaffold based on hyaluronic acid and equine type I collagen. Pharmaceutics, 14, 1752. DOI
- Wang, F., Xia, D., Wang, S., Gu, R., Yang, F., Zhao, X., Liu, X., Zhu, Y., Liu, H., Xu, Y., Liu, Y., Zhou, Y. (2022) Photocrosslinkable Col/PCL/Mg composite membrane providing spatiotemporal maintenance and positive osteogenetic effects during guided bone regeneration. Bioactive Materials, 13, 53-63. DOI
- Moreno-Castellanos, N., Cuartas-Gómez, E., Vargas-Ceballos, O. (2023) Functionalized collagen/ poly(ethylene glycol) diacrylate interpenetrating network hydrogel enhances beta pancreatic cell sustenance. Gels, 9, 496. DOI
- Tang, S., Vickers, S.M., Hsu, H.-P., Spector, M. (2007) Fabrication and characterization of porous hyaluronic acid–collagen composite scaffolds. Journal of Biomedical Materials Research. 82A, 323-335. DOI
- Fernandes-Cunha, G.M., Brunel, L.G., Arboleda, A., Manche, A., Seo, Y.A., Logan, C., Chen, F., Heilshorn, S.C., Myung, D. (2023) Collagen gels crosslinked by photoactivation of riboflavin for the repair and regeneration of corneal defects. ACS Applied Bio Materials, 6(5), 1787-1797. DOI
- Borges, L., Logan, M., Weber, S., Lewis, S., Fang, C., Correr-Sobrinho, L., Pfeifer, C. (2024) Multi-acrylamides improve bond stability through collagen reinforcement under physiological conditions. Dental Materials, 40(6), 993- 1001. DOI
- Huang, G., Huang, H. (2018) Application of hyaluronic acid as carriers in drug delivery. Drug Delivery, 25(1), 766-772. DOI
- Beldman, T.J., Senders, M.L., Alaarg, A., Pe rez-Medina, C., Tang, J., Zhao, Y., Fay, F., Deichmoller, J., Born, B., Desclos, E., N. van der Wel, N., Hoebe, R.A., Kohen, F., Kartvelishvily, E., Neeman, M., Reiner, T., Calcagno, C., Fayad, Z.A., P. J. de Winther, M., Lutgens, E., J. M. Mulder, W., Kluza, E. (2017) Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano, 11, 5785-5799. DOI
- Kim, J., Park, Y., Tae, G., Lee, K.B., Hwang, C.M., Hwang, S.J., Kim, I.S. Noh, I., Sun, K. (2007) Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments. Journal of Biomedical Materials Research, 88A, 967-975. DOI
- Al-Sibani, M., Al-Harrasi, A., Neubert, R.H. (2015) Evaluation of invitro degradation rate of hyaluronic acid-based hydrogel cross-linked with 1,4-butanediol diglycidyl ether (BDDE) using RP-HPLC and UV-Vis spectroscopy. Journal of Drug Delivery Science and Technology, 29, 24-30. DOI
- Velasco-Rodriguez, B., Diaz-Vidal, T., Rosales-Rivera, L.C., García- González, C.A., Alvarez-Lorenzo, C., Al-Modlej, A., Domínguez-Arca, V., Prieto, G., Barbosa, S., Soltero Martínez, J.F.A., Taboada, P. (2021) Hybrid methacrylated gelatin and hyaluronic acid hydrogel scaffolds. Preparation and systematic characterization for prospective tissue engineering applications. International Journal of Molecular Sciences, 22, 6758. DOI
- Nedunchezian, S., Wu, C.-W., Wu, S.-C., Chen, C.-H., Chang, J.-K., Wang, C.-K. (2022) Characteristic and chondrogenic differentiation analysis of hybrid hydrogels comprised of hyaluronic acid methacryloyl (HAMA), gelatin methacryloyl (GelMA), and the acrylate-functionalized nano-silica crosslinker. Polymers, 14(10), 2003. DOI
- Asensio, G., Benito-Garzon, L., Ramirez-Jimenez, R.A., Guadilla, Y., Gonzalez-Rubio, J., Abradelo, C., Parra, J.; Martín-López, M.R.; Aguilar, M.R.; Vázquez-Lasa, B., Rojo, L. (2022) Biomimetic gradient scaffolds containing hyaluronic acid and Sr/Zn folates for osteochondral tissue engineering. Polymers, 14(1), 12. DOI
- Vasquez, J.M., Idrees, A., Carmagnola, I., Sigen, A., McMahon, S., Marlinghaus, L., Ciardelli, G., Greiser, U., Tai, H., Wang, W., Salber, J., Chiono, V. (2021) In situ forming hyperbranched PEG-thiolated hyaluronic acid hydrogels with honey-mimetic antibacterial properties. Frontiers in Bioengineering and Biotechnology, 9, 742135. DOI
- Jongprasitkul, H., Parihar, V.S., Turunen, S., Kellomaki, M. (2023) pH-Responsive gallol-functionalized hyaluronic acid-based tissue adhesive hydrogels for injection and Three-Dimensional bioprinting. ACS Applied Materials. Interfaces, 15, 33972-33984. DOI
- Ucar, B., Yusufogullari, S., Humpel, C. (2020) Collagen hydrogels loaded with fibroblast growth factor-2 as a bridge to repair brain vessels in organotypic brain slices. Experimental Brain Research, 238, 2521–2529. DOI
