Некоторые способы управления деградацией биомедицинских имплантируемых композиций на основе коллагена и гиалуроновой кислоты

##plugins.themes.bootstrap3.article.main##

И.С. Рудик
А.В. Васильев
А.В. Миронов
В.С. Кузнецова
Ф.Ф. Лосев

Аннотация

Рассмотрены современные подходы к модификации кинетики деградации in vitro имплантируемых матриксов на основе коллагена и гиалуроновой кислоты. Из примерно ста найденных статей по схожей тематике в данном обзоре были проанализированы 24 работы. Произведена оценка влияния полимерных добавок в составе материалов на основе коллагена и гиалуроновой кислоты на скорость их деградации в гидролитической и ферментативной среде. Описаны механизмы взаимодействия компонентов и влияния их структуры на процессы деградации. Предложены подходы к разработке имплантируемых изделий медицинского назначения на основе биополимеров с контролируемыми свойствами деградации и биосовместимости.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Рудик I., Васильев A., Миронов A., Кузнецова V., & Лосев F. (2025). Некоторые способы управления деградацией биомедицинских имплантируемых композиций на основе коллагена и гиалуроновой кислоты. Biomedical Chemistry: Research and Methods, 8(4), e00289. https://doi.org/10.18097/BMCRM00289
Раздел
ОБЗОРЫ

Библиографические ссылки

  1. Gubochkina, A.A., Legonkova, O.A. (2023) Bioresorbable bone materials: status in the Russian Federation. Microelements in Medicine, 24(4), 3-18. DOI
  2. Vasilyev, A.V., Kuznetsova, V.S., Bukharova, T.B., Grigoriev, T.E., Zagoskin, Yu.D., Korolenkova, M.V., Zorina, O.A., Chvalun, S.N., Goldshtein, D.V., Kulakov, A.A. (2020) Development prospects of curable osteoplastic materials in dentistry and maxillofacial surgery. Heliyon, 6, e04686. DOI
  3. Lykoshin, D.D., Zaitsev, V.V., Kostromina, M.A., Esipov, R.S. (2021) New generation osteoplastic materials based on biological and synthetic matrices. Fine chemical technologies, 16(1), 36-54. DOI
  4. Kuznetsova, V.S., Vasiliev, A.V., Grigoriev, T.E., Zagoskin, Yu.D., Chvalun, S.N., Bukharova, T.B., Goldstein, D.V., Kulakov, A.A. (2017) Prospects for using hydrogels as a basis for curable bone-plastic materials. Dentistry, 96(6), 68-74. DOI
  5. Vasiliev, A.V., Kuznetsova, V.S., Galitsyna, E.V., Bukharova, T.B., Osidak, E.O., Fatkhudinova, N.L., Leonov, G.E., Babichenko, I.I., Domogatsky, S.P., Goldstein, D.V., Kulakov, A.A. (2019) Biocompatibility and osteogenic properties of collagen-fibronectin hydrogel impregnated with BMP-2. Dentistry, 98(6-2), 5-11. DOI
  6. Vasilyev, A.V., Kuznetsova, V.S., Bukharova, T.B., Osidak, E.O., Grigoriev, T.E., Zagoskin, Y.D., Nedorubova, I.A., Domogatsky, S.P., Babichenko, I.I., Zorina, O.A., Kutsev, S.I., Chvalun, S.N., Kulakov, A.A., Losev, F.F., Goldshtein, D.V. (2021) Osteoinductive moldable and curable bone substitutes based on collagen, BMP-2 and highly porous polylactide granules, or a mix of HAP/β- TCP. Polymers, 13(22), 3974. DOI
  7. Possessor, A.D., Badalyan, V.A., Vasiliev, A.V. (2024) Results of increasing the thickness of soft tissues after using collagen matrices and connective tissue grafts. Dentistry, 103(6-2), 29-32. DOI
  8. Slovikova, A., Vojtova, L., Jancar, J. (2008) Preparation and modification of collagen-based porous scaffold for tissue engineering. Chemical Papers, 62(4), 417-422. DOI
  9. Lamparelli, E.P., Casagranda, V., Pressato, D., Maffulli, N., Della Porta, G., Bellini, D. (2022) Synthesis and characterization of a novel composite scaffold based on hyaluronic acid and equine type I collagen. Pharmaceutics, 14, 1752. DOI
  10. Wang, F., Xia, D., Wang, S., Gu, R., Yang, F., Zhao, X., Liu, X., Zhu, Y., Liu, H., Xu, Y., Liu, Y., Zhou, Y. (2022) Photocrosslinkable Col/PCL/Mg composite membrane providing spatiotemporal maintenance and positive osteogenetic effects during guided bone regeneration. Bioactive Materials, 13, 53-63. DOI
  11. Moreno-Castellanos, N., Cuartas-Gómez, E., Vargas-Ceballos, O. (2023) Functionalized collagen/ poly(ethylene glycol) diacrylate interpenetrating network hydrogel enhances beta pancreatic cell sustenance. Gels, 9, 496. DOI
  12. Tang, S., Vickers, S.M., Hsu, H.-P., Spector, M. (2007) Fabrication and characterization of porous hyaluronic acid–collagen composite scaffolds. Journal of Biomedical Materials Research. 82A, 323-335. DOI
  13. Fernandes-Cunha, G.M., Brunel, L.G., Arboleda, A., Manche, A., Seo, Y.A., Logan, C., Chen, F., Heilshorn, S.C., Myung, D. (2023) Collagen gels crosslinked by photoactivation of riboflavin for the repair and regeneration of corneal defects. ACS Applied Bio Materials, 6(5), 1787-1797. DOI
  14. Borges, L., Logan, M., Weber, S., Lewis, S., Fang, C., Correr-Sobrinho, L., Pfeifer, C. (2024) Multi-acrylamides improve bond stability through collagen reinforcement under physiological conditions. Dental Materials, 40(6), 993- 1001. DOI
  15. Huang, G., Huang, H. (2018) Application of hyaluronic acid as carriers in drug delivery. Drug Delivery, 25(1), 766-772. DOI
  16. Beldman, T.J., Senders, M.L., Alaarg, A., Pe rez-Medina, C., Tang, J., Zhao, Y., Fay, F., Deichmoller, J., Born, B., Desclos, E., N. van der Wel, N., Hoebe, R.A., Kohen, F., Kartvelishvily, E., Neeman, M., Reiner, T., Calcagno, C., Fayad, Z.A., P. J. de Winther, M., Lutgens, E., J. M. Mulder, W., Kluza, E. (2017) Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano, 11, 5785-5799. DOI
  17. Kim, J., Park, Y., Tae, G., Lee, K.B., Hwang, C.M., Hwang, S.J., Kim, I.S. Noh, I., Sun, K. (2007) Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments. Journal of Biomedical Materials Research, 88A, 967-975. DOI
  18. Al-Sibani, M., Al-Harrasi, A., Neubert, R.H. (2015) Evaluation of invitro degradation rate of hyaluronic acid-based hydrogel cross-linked with 1,4-butanediol diglycidyl ether (BDDE) using RP-HPLC and UV-Vis spectroscopy. Journal of Drug Delivery Science and Technology, 29, 24-30. DOI
  19. Velasco-Rodriguez, B., Diaz-Vidal, T., Rosales-Rivera, L.C., García- González, C.A., Alvarez-Lorenzo, C., Al-Modlej, A., Domínguez-Arca, V., Prieto, G., Barbosa, S., Soltero Martínez, J.F.A., Taboada, P. (2021) Hybrid methacrylated gelatin and hyaluronic acid hydrogel scaffolds. Preparation and systematic characterization for prospective tissue engineering applications. International Journal of Molecular Sciences, 22, 6758. DOI
  20. Nedunchezian, S., Wu, C.-W., Wu, S.-C., Chen, C.-H., Chang, J.-K., Wang, C.-K. (2022) Characteristic and chondrogenic differentiation analysis of hybrid hydrogels comprised of hyaluronic acid methacryloyl (HAMA), gelatin methacryloyl (GelMA), and the acrylate-functionalized nano-silica crosslinker. Polymers, 14(10), 2003. DOI
  21. Asensio, G., Benito-Garzon, L., Ramirez-Jimenez, R.A., Guadilla, Y., Gonzalez-Rubio, J., Abradelo, C., Parra, J.; Martín-López, M.R.; Aguilar, M.R.; Vázquez-Lasa, B., Rojo, L. (2022) Biomimetic gradient scaffolds containing hyaluronic acid and Sr/Zn folates for osteochondral tissue engineering. Polymers, 14(1), 12. DOI
  22. Vasquez, J.M., Idrees, A., Carmagnola, I., Sigen, A., McMahon, S., Marlinghaus, L., Ciardelli, G., Greiser, U., Tai, H., Wang, W., Salber, J., Chiono, V. (2021) In situ forming hyperbranched PEG-thiolated hyaluronic acid hydrogels with honey-mimetic antibacterial properties. Frontiers in Bioengineering and Biotechnology, 9, 742135. DOI
  23. Jongprasitkul, H., Parihar, V.S., Turunen, S., Kellomaki, M. (2023) pH-Responsive gallol-functionalized hyaluronic acid-based tissue adhesive hydrogels for injection and Three-Dimensional bioprinting. ACS Applied Materials. Interfaces, 15, 33972-33984. DOI
  24. Ucar, B., Yusufogullari, S., Humpel, C. (2020) Collagen hydrogels loaded with fibroblast growth factor-2 as a bridge to repair brain vessels in organotypic brain slices. Experimental Brain Research, 238, 2521–2529. DOI